PTFE and PFA Lined Piping Systems

ASME B16.5 Class 150

the corrosion expert

Crp

CRP is a world leader in the manufacture of PTFE and PFA lined equipment including pipe, fittings, valves, bellows, sight glasses and other ancillary equipment. CRP supplies to the chemical, agro-chemical, pharmaceutical, petrochemical, biotechnology, pulp & paper, metals refining, food and beverage manufacturing sectors.

The core of CRP's product offering is PTFE and PFA lined piping. CRP manufacture the most comprehensive range of equipment to provide a cost effective and versatile piping system.

This manual covers the ASME Class 150 product range. The range is also manufactured to DIN dimensional standards and to other international piping standards.

CRP Todmorden Road Littleborough OL15 9EG United Kingdom tel: +44 (0)1706 756400 fax: +44 (0)1706 379567 e-mail: enquiry@crp.co.uk

www.crp.co.uk www.ptfebellows.com

Why choose CRP?

Index

 Focus on Fine Powder PTFE and PFA the best materials for corrosion, permeation and high purity management The lowest total cost of ownership Materials Technical reassurance and control over all manufacturing processes in-house • Traceability of materials and testing through the complete supply chain Logistical control in manufacturing making the business flexible and responsive to customer needs Materials • Control of complete supply chain from raw material to finished product Managemen Continuing investment in product and process innovation •Both a manufacturer and distributor of complementary lined equipment with the capability of complete package supply A business with the flexibility and nimbleness of a small company, but with the financial underpinning of a Develop large enterprise • A problem solving business whose catalogue is only the start Real technical expertise in an area where experience is critical • A technically qualified field sales team whose role is to provide product support, training and expertise to solve uniqué site problems Expert • A global player supplying world-wide with a local presence Designed, manufactured and tested according to the European Pressure Equipment Directive Manufacturing and test in accordance with ASTM F1545 • Extensive in-house testing of raw and processed materials and finished products Standards Driven by what is important to our customers: • Quality - ISO 9001:2015 certified Delivery lead times Performance • Delivery reliability - tracking and managing delivery performance for on time in full delivery As a true manufacturer capable of being flexible to manage emergencies Measures • 35 years of product development • 35 years of process technology development Long term supply contracts to global businesses Long term supply contracts to small local businesses - globally Frack Record •More than 2,500 satisfied customers

Our Plan

"To be a World Class supplier of fluoropolymer lined equipment through delivering technically superior products and by creating close relationships with customers that require high levels of service, quality, innovation and technical support to provide the lowest cost of ownership."

Key Product Families
Materials Introduction
Design Philosophy
Summary Dimensional Table
Joint Data
Popular Lined Piping Product
Pipe Spools
Van Stone Pipe Spool
Welded Pipe Spool
Spacer Type 1
Spacer Type 1 Tapered
Spacer Type 2
Spacer Type 3
Fittings
90° Elbow
90° Elbow Rotating Flanges
45° Elbow
Equal Tee
Equal Tee Rotating Flanges
Reducing Tee
Instrument Tee
Concentric Reducer
Eccentric Reducer
Reducing Flange Taper Bore
Blank Flange
Less Frequent Lined Piping Product
Pipe Spools
Puddle Flange Pipe Spool
Drain Leg
Jacketed Pipe Spools & Fittings
Closing Pipe Spool
Field Flare Pipe Spools
Field Flare Pipe Spool Slide Fit No Flanges
Field Flare Pipe Spool Slide Fit Van Stone
Field Flare Pipe Spool Slide Fit Welded
Field Flare Pipe Spool Tight Fit Van Stone
Field Flare Threaded Companion Flange
Field Flare Equipment
Spacer Type 1 Variable Angle
Fittings
90° Elbow 5D
Short Stack Tee
Equal Lateral Tee
Reducing Lateral Tee
Double Branch Instrument Tee
Equal Cross
Reducing Cross
Short Stack Cross
Reducing Flange Parallel Bore
Lined Piping Specials
Blanking Spade
Orifice Plate
Sliding Blind
Spectacle Blind
Full Face Flange Adapter
Camlock Hose Adapter
Strainer Cross

Piping Options	
Venting Systems	
Venting Types	
Non-Permenat Duty Uninsulated Line	
Non-Permenat Duty Insulated Line	
Permeant Duty Uninsulated Line	
Permeant Duty Insulated Line	
Directional Venting	
Earthing	
Spikies	
Fluorogask	
Toughgask	
Safety Shields	
Flange Shields	
Bellows, Valve & High Temperature Shields	
Construction	
Flange Protection Tape	
Dip Pipes	
Continuously Lined Dip Pipe (CLDP)	
Curved CLDP	
Dip Leg	
Entry Pipe	
Lined Equipment Basics	
Specification Details	
Pressure & Temperature Vacuum & Temperature	
Product Materials of Construction PTFE & PFA Materials Properties	
PTFE Liner Dimensions	
PFA Lining Dimensions	
Spool & Fitting Bores Materials Contact Compliance	
Static-Dissipating PTFE Performance	
Material Standards PTFE & PFA Materials Standards	
Steelwork Materials Standards	
Steelwork Materials Dimensions	
Flange Dimensions	
Stub End Dimensions	
Cast Fittings Dimensions	
Key Product Tolerances Design Standards	
Quality Standards	
Other Activities	
Welding	
Product Finishing	
Product Testing Permanent Product Marking	
Shipment Product Marking	
Product Traceability	
Installation	
Non-Destructive Testing	
Training Template Lined Piping Specification	
Template cined Piping specification	

3

Key Product Families

Materials Introduction

CRP complement the lined piping with associated products that follow the PTFE or PFA lined theme. These include:

- PFA lined Ball, Plug and Butterfly Valves for the UK market
- **PFA lined Swing Check and Poppet Check Valves**
- **PFA lined Control Valves**
- **PFA lined Strainers**
- PFA lined and unlined Tubular Sight Glasses and Level Gauges
- **PTFE Bellows or Expansion Joints**

The comprehensive range of standard and customised sampling systems for those that require safe and representative items including special earthing washers sampling, typically for sampling hazardous "Spikies" for lined systems, PTFE gaskets or expensive materials. These can be In-line, mounted directly to pipe work or reactor vessels or mounted to the top of

business also produces a reactors. CRP distribute a range of Graphite and Silicon Carbide Heat Exchangers plus many pipeline complementary designed specifically for lined systems and a comprehensive range of safety shields.

a problem solving business and although we produce catalogues we spend much time developing specific products or product combinations to solve customer processing problems. Again, this is facilitated by having our own design and manufacturing capability.

Most importantly CRP positions itself as

Materials Introduction

Lining Materials

CRP manufactures product in both virgin and staticdissipating (also known as anti-static) fluoropolymer resins; principally in PTFE and PFA. These are supplied under the HiPerFlon label representing a combination of raw materials and processing choices. In addition we manufacture products in a modified PTFE that provides enhanced performance against permeation. This is termed Ultra HiPerFlon or abbreviated to UHP.

More background to lining materials is provided in the following section on Design Philosophy, but here is a very simple guide to our key fluoropolymer resins and where they are used.

Virgin PTFE HiPerFlon

CRP's Virgin PTFE is called HiPerFlon in order to recognise the unique combination of material - a fine powder PTFE and process - paste extrusion. It is used principally on pipe spools in straight lengths and some simple fittings without branches.

PTFE UHP (Ultra HiPerFlon)

This material is used for high performance requirements specifically for the management of permeation.

Static-Dissipating PTFE (Anti-static)

Here a small percentage of carbon black is used within the virgin PTFE which reduces the electrical resistance of the material to a level at which any electrical charge generated by static charging within a pipeline can flow through the PTFE to the adjoining

Lining Material Range										
		Pipe S	pools		Fittin	gs				
Nomin	Virgin PTFE HiPerFlon	Static-Dissipating PTFE	. UHP PTFE		Virgin PFA/PTFE	Static-Dissipating PFA/PTFE				
Inches	mm	Heavy Duty	Heavy Duty	Heavy Duty Superweight		Heavy Duty	Heavy Duty			
1/2	15	✓	\checkmark		\checkmark	\checkmark	\checkmark			
3⁄4	20	\checkmark	✓		✓	\checkmark	\checkmark			
1	25	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			
1½	40	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			
2	50	\checkmark	~		\checkmark	\checkmark	\checkmark			
3	80	\checkmark	 Image: A second s		\checkmark	\checkmark	\checkmark			
4	100	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			
6	150	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			
8	200	\checkmark	\checkmark	\checkmark		 Image: A second s	\checkmark			
10	250	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			
12	300	\checkmark	\checkmark	\checkmark		✓	\checkmark			
14	350	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			

	_
Key Lining Choices	
Application	
Most applications requiring lined pipe and fittings	
Applications with known permeant chemicals	
Applications for high purity	
Applications requiring management of static discharge; typically non-conducting solvents	

steelwork and to earth.

Virgin PFA

PFA as a melt processable material with all of the performance characteristics of PTFE and some more is used as the material of choice for lined fittings, being capable of dealing with more complex geometries and having superior performance in the most challenging applications.

Static-Dissipating (Anti-static) PFA

This fulfills the same requirement for fittings as static-dissipating PTFE does for pipe spools.

Outer Housings

Pipe Spools and Fabricated Fittings

Pipe spools are manufactured using carbon steel rated for pressure containing purposes. These are either provided with integral stub ends behind which we mount a flange - referred to as Van Stone spools, or a welded flange or stub end combined with a loose or rotating flange. Fabricated

fittings are made from a combination not contain construction welds. The grade of carbon steel pipe, forgings, flanges and stub ends. All welding activities are undertaken using "coded" welders.

Cast Fittings

Where CRP differs significantly from the competition is that the majority of pipe fittings are manufactured as steel lost wax investment castings. A number of product quality reasons have driven this choice, notably:

- 2. Greater strength
- З. installation fit
- 4. geometry
- 5. No flash or parting lines
- 6.

identification and traceability

Cast steel fittings are significantly almost 50% - stronger than fabrications of a similar nominal bore and importantly do

Product Choice

HiPerFlon Virgin PTFE and PFA

UltraHiPerFlon PTFE and PFA

HiPerFlon Virgin PTFE and PFA

HiPerFlon Static-Dissipating PTFE and PFA

No fabrication welds, therefore no concerns about weld integrity

Precise close tolerance parts for

Dimensional accuracy for lining

Clear written casting detail for

of steel used by CRP is ASTM A216 WCB with a minimum cast wall of 5.5mm at 25NB which is some 2.12 mm thicker that schedule 40 steel tube of the equivalent nominal bore

The dimensional accuracy gives improved lining control with lined faces which are square to the line axis of the fittings bores and bores that are concentric to the flange periphery and the body outside diameter. The extensive machining of the steel casting provides flat rear faces to flanges allows accurate torqueing of bolts and assists in flanges being pulled up square. The fine ceramic powder used in creating the steel casting mould allows much greater detail to be cast and moreover be much more readable than that provided by sand cast ductile iron and such markings are not even possible with fabricated fittings - generally leaving them anonymous and untraceable.

Design Philosophy

Summary Dimensional Table

Manufacturing

It is important to understand that CRP manufacture their own products in their manufacturing facility based just north of Manchester in the UK. CRP is unusual in the UK as the only direct manufacturer of the product from raw fluoropolymer through to the finished product. This gives the business great advantages of logistical control of delivery lead-times and due date adherence. It also means that we are fully in control of our own manufacturing processes and quality and can provide complete product traceability.

Process Expertise

CRP has been around for much of the time that PTFE and all of the time that PFA have existed on the planet. The company has had the benefit of growing up with these materials and has played a key role in their development for processing through working with the raw material manufacturers and developing their own processing equipment. All of the key machines and associated equipment at CRP for both PTFE and PFA production have been developed - and continue to be developed in-house. This enables us to continue to expand the product range, but as importantly gives us the certain knowledge of how products have been manufactured. This is critical when not all attributes of such products can be tested through routine production tests. CRP is the only manufacturer producing PFA moulded elbows and tees in sizes up to 14in diameter.

Our Materials and Processes

CRP are proud of their association with key materials manufacturers and have selected the top international suppliers of fluoropolymers for their materials providing both quality and technical support. Concerning PTFE there are two key material forms used in our industry, granular powders and fine powders

(technically known as coagulated dispersions.)

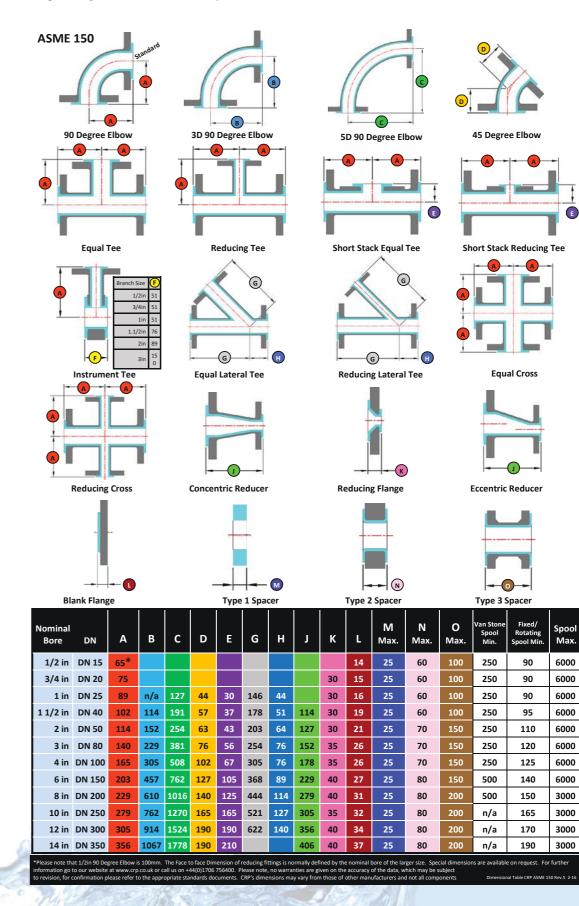
Paste Extrusion

CRP chooses to use fine powders combined with a pipe liner production process called paste extrusion. The powder has a base particle size of 0.18 - 0.25µm making them one hundred times smaller than the granular powders. Moreover, the particle size distribution is extremely narrow versus that of the granular powders. A combination of the two characteristics provides a packing density for the material of 55%, which is close to the theoretical maximum for spheres of equal size. However, the fine powder material has another attribute that really moves its processing on and this is the agglomeration of these base or primary particles into larger secondary particles of 400-600 µm in size.

These features come into their own in the paste extrusion process. In this process the PTFE is extruded through a die with a pin inside providing the internal diameter and wall thickness of the soon to become pipe liner. The die has a smaller crosssectional area than the PTFE billet being extruded and its form is gradual causing the flow velocity to increase as the material enters the die. This generates a shear gradient in the direction of the flow and forces the paste material into irreversible plastic deformation. The extruded material gains strength from the deformation, a process called fibrillation and the void content is further reduced. This is because the secondary particles are deformed into fibrils - a string like alignment of the primary particles, and have irreversibly deformed, but the primary particles are preserved intact although kneaded, bouncing back into their round form after extrusion. Once through the extrusion process the primary particles relax and return to their original spherical shape, leaving a more compact

ed structure.

In terms of what this means for the user is that paste extruded fine powders, combined with the homogeneous nature of the liner and it's unifrom wall thickness provide the highest levels of permeation resistance and the smoothest material finish – aiding both service life and the cleanability of the product.


PFA Transfer Moulding

PFA was the outcome of years of research into creating a fluoropolymer that is a true thermoplastic and therefore melt processable. In production PTFE has the challenge of requiring very specialist techniques to create the shapes required for products. PFA does not have this disadvantage as it is capable of being melted and moulded into shape. Again CRP chooses PFA's that have the highest performance in corrosive applications manifest by a low melt flow rate (MFR). Also high purity PFA's are also available for specific applications. The process for lining components in PFA is challenging, as the PFA has to be injected at high pressure and temperature into a void created inside the component in a stress free manner. The process is isothermal in that the component, it's tooling and the PFA all have to be at the melt temperature of the PFA through the moulding process - called transfer moulding. A further challenge is that the PFA reduces in volume as it cools and this reduction has to be catered for through the introduction of futher raw material.

The equipment for transfer moulding has been developed in-house and significant equipment development has been initiated recently with the use of the expertise of the Polymer Science department at a local university.

Dimensions are generally to ASME B16.5 and expressed in millimetres.

Joint Data

Van Stone Pipe Spool **Rotating Flanges**

Half Joint Calculator for ASME B16.5 Class 150 Joints for CRP Lined Equipment Dimensions in millimetres

Bolting and Torque Details

Nominal Bore	DN	Flange Ø	Pitch Circle Ø	No. of Bolt Holes	Hole Ø	Bolts/ Studs	Bolts/Studs Metric	Torque Nm	Please refer to CRP User Guide for more information relating to making joints in PTE/PFA lined equipment. Remember re-torqueing is required after 24 hours or one process cycle.
1/2 in	DN 15	90	60.3	4	15.9	1/2″	M12	7	A (B) C
3/4 in	DN 20	98	69.9	4	15.9	1/2"	M12	15	
1 in	DN 25	108	79.4	4	15.9	1/2"	M12	19	
1 1/2 in	DN 40	127	98.4	4	15.9	1/2"	M12	27	
2 in	DN 50	152	120.7	4	19.0	5/8"	M16	47	
3 in	DN 80	190	152.4	4	19.0	5/8"	M16	73	
4 in	DN 100	229	190.5	8	19.0	5/8"	M16	54	
6 in	DN 150	279	241.3	8	22.2	3/4"	M20	108	
8 in	DN 200	343	298.5	8	22.2	3/4"	M20	136	
10 in	DN 250	406	362.0	12	25.4	7/8"	M24	127	Washer not included in
12 in	DN 300	483	431.8	12	25.4	7/8″	M24	145	calculations below.
14 in	DN 350	533	476.3	12	28.6	1″	M27	182	

Nominal Bore	DN	Component	Half Joint Total Thickness
1 in	DN 25	Heavy Duty Van Stone Spool	20.5
1 1/2 in	DN 40	Heavy Duty Van Stone Spool	23.5
2 in	DN 50	Heavy Duty Van Stone Spool	25.5
3 in	DN 80	Heavy Duty Van Stone Spool	29.5
4 in	DN 100	Heavy Duty Van Stone Spool	33.0
6 in	DN 150	Heavy Duty Van Stone Spool	36.5
8 in	DN 200	Heavy Duty Van Stone Spool	42.0
1/2 in	DN 15	Heavy Duty Spool Fixed Flange	13.5
3/4 in	DN 20	Heavy Duty Spool Fixed Flange	14.5
1 in	DN 25	Heavy Duty Spool Fixed Flange	17.5
1 1/2 in	DN 40	Heavy Duty Spool Fixed Flange	20.5
2 in	DN 50	Heavy Duty Spool Fixed Flange	21.5
3 in	DN 80	Heavy Duty Spool Fixed Flange	26.5
4 in	DN 100	Heavy Duty Spool Fixed Flange	28.0
6 in	DN 150	Heavy Duty Spool Fixed Flange	31.0
8 in	DN 200	Heavy Duty Spool Fixed Flange	35.0
10 in	DN 250	Heavy Duty Spool Fixed Flange	38.0
12 in	DN 300	Heavy Duty Spool Fixed Flange	40.0
1/2 in	DN 15	Heavy Duty Spool Rotating Flange	23.5
3/4 in	DN 20	Heavy Duty Spool Rotating Flange	26.5
1 in	DN 25	Heavy Duty Spool Rotating Flange	29.5
1 1/2 in	DN 40	Heavy Duty Spool Rotating Flange	32.5
2 in	DN 50	Heavy Duty Spool Rotating Flange	35.5
3 in	DN 80	Heavy Duty Spool Rotating Flange	42.5
4 in	DN 100	Heavy Duty Spool Rotating Flange	44.0
6 in	DN 150	Heavy Duty Spool Rotating Flange	49.0
8 in	DN 200	Heavy Duty Spool Rotating Flange	55.0
10 in	DN 250	Heavy Duty Spool Rotating Flange	60.0
12 in	DN 300	Heavy Duty Spool Rotating Flange	62.0
14 in	DN 350	Heavy Duty Spool Rotating Flange	65.5

Please note that for certain sizes of product - particularly small 45 degree elbows, threaded holes and stud bolts are used, changing these calculations. For more information please see our website

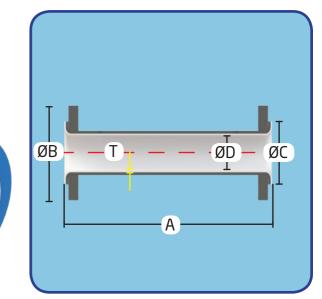
*Assuming nuts are faced one side

Nominal				Half Joint 1	lotal		
Bore	DN		Component	Thickness			
1/2 in	DN 1	5 Fitti	ng Fixed Flange	12.5			
3/4 in	DN 2	20 Fitti	ng Fixed Flange	15.0			
1 in	DN 2		ng Fixed Flange	17.0			
1 1/2 in	DN 4	0 Fitti	ng Fixed Flange	21.0			
2 in	DN 5	50 Fitti	ng Fixed Flange	23.0			
3 in	DN 8	0 Fitti	ng Fixed Flange	28.5			
4 in	DN 1	00 Fitti	ng Fixed Flange	29.5			
6 in	DN 1	50 Fitti	ng Fixed Flange	31.5			
8 in	DN 2	00 Fitti	ng Fixed Flange	36.5			
10 in	DN 2	50 Fitti	ng Fixed Flange	39.5			
12 in	DN 3	00 Fitti	ng Fixed Flange	41.0			
14 in	DN 3	50 Fitti	ng Fixed Flange	43.5			
1/2 in	DN 1		ng Rotating Flan	ge 22.5			
3/4 in	DN 2	0 Fitti	ng Rotating Flan	ge 27.0			
1 in	DN 2		ng Rotating Flan				
1 1/2 in	DN 4	IO Fitti	ng Rotating Flan	ge 33.0			
2 in	DN 5	Fitti	ng Rotating Flan	ge 37.0			
3 in	DN 8	IO Fitti	ng Rotating Flan	ge 44.5			
4 in	-		ng Rotating Flan				
6 in	DN 1	50 Fitti	ng Rotating Flan	ge 49.5			
8 in	DN 2	00 Fitti	ng Rotating Flan	ge 56.5			
10 in	DN 2	50 Fitti	ng Rotating Flan	ge 61.5			
12 in			ng Rotating Flan				
14 in	DN 3	50 Fitti	ng Rotating Flan	ge 67.5			

	JNC	Thread	Nut Thickness	B			
Th	iread	Pitch	Ordinary	Heavy			
	1/2"	2.0	11	12			
	5/8″	2.3	14	16			
	3/4″	2.5	17	19			
	7/8″	2.8	19	22			
	1″	3.0	22	25			
м	etric	Thread	Nut Thicknes				
Th	read	Pitch	Nut micknes				
	M12	1.75	10				
	M16	2.0	13	13			
	M20	2.5	16				
	M24	3.0	19				
	M27	3.0	22				

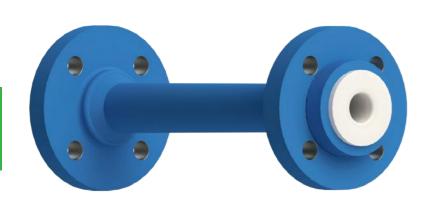
The process of manufacturing a pipe spool with both flanges rotating without the use of conventionally welded or screw threaded stub ends is known as the "Van Stone" system. The process essentially forms a lap collar by spinning over the

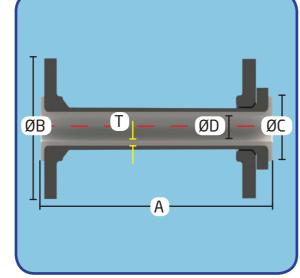
parent tube at right angles to the original shank to gather dirt or become corroded tube axis. and it provides a cost effective means of providing two rotating flanges for ease The technical advantages are that of installation. Van Stone pipe spools flanges are absolutely square, flange are available in sizes up to 8 inch nominal to flange bolting is short so giving less bore.


Van St	one Pi	pe Spool I	Rotating Fl	anges			UltraHiPerFlon *			
			Length				Superweight/			Weight
						HiPerFlon	Heavy Duty UHP			
						PTFE	PTFE			
				Flange		Liner	Liner	Lined		
				Outside	Raised	Thickness	Thickness	Bore		_
		Minimum	Maximum	Diameter	Face	Nominal ¹	Nominal ¹	Nominal ²	Flange	Per
Nomina	l Bore		А	ØВ	ØC	Т	Т	ØD	Pack	metre
Inches	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg
1/2	15	250	6000	90	35	2.3	2.3	16	1.0	2.0
3⁄4	20	250	6000	100	43	2.3	2.3	16	1.3	2.0
1	25	250	6000	110	51	3.2	4.5	20	3.0	2.8
1½	40	250	6000	125	73	3.2	4.5	34	4.0	5.0
2	50	250	6000	150	92	3.2	4.5	46	6.0	6.5
3	80	250	6000	190	127	3.2	4.8	70	10	12.3
4	100	250	6000	230	157	4.5	5.0	93	12	16.0
6	150	500	6000	280	216	5.5	6.0	143	22	32.0
8	200	500	3000	345	270	8.5	8.5	188	27	54.0

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual. 2 - Based on HiPerFlon and because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated volume

8




9

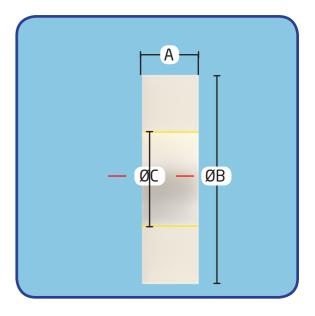
Spacer Type 1

This spool construction has a welded slip on flange at one end and a welded stub end and loose backing flange at the other to provide a rotating flange. This is the most common pipe spool standard world-wide.

Welded F	Pipe Spo	ol F/R		UltraHiPerFlon *						
			Length				Superweight/		Weight	
		Minimum	Maximum	Flange Outside Diameter	Raised Face	HiPerFlon PTFE Liner Thickness Nominal ¹	Heavy Duty UHP PTFE Liner Thickness Nominal ¹	Lined Bore Nominal ²	Flange Pack	Per metre
Nominal E	Bore		А	ØВ	ØC	Т	Т	ØD		
Inches	mm	mm	mm	mm	mm	mm		mm	kg	kg
1/2	15	90	6000	90	35	2.3	2.3	16	2	2.0
3⁄4	20	90	6000	100	43	2.3	2.3	16	2	2.0
1	25	90	6000	110	51	3.2	4.5	20	3	2.8
1½	40	95	6000	125	73	3.2	4.5	34	4	5.0
2	50	110	6000	150	92	3.2	4.5	46	6	6.5
3	80	120	6000	190	127	3.2	4.8	70	10	12.3
4	100	125	6000	230	157	4.5	5.0	93	12	16.0
6	150	140	6000	280	216	5.5	6.0	143	22	32.0
8	200	150	3000	345	270	8.5	8.5	188	27	54.0
10	250	165	3000	405	324	9.1	9.1	247	38	70.0
12	300	170	3000	485	381	10.4	10.4	286	59	86.0
14	350	190	3000	535	413	8.3	8.3	319	80	109.0

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual.

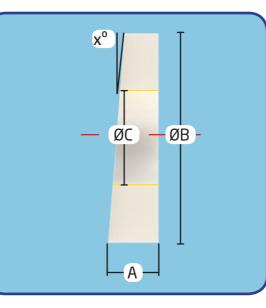
2 - Based on HiPerFlon and because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated volume.



a piping system, where the space is too going up to 25mm in length. CRP would sized to fit snugly inside the bolt circle of small for a conventional pipe spool or not recommend Type 1 spacers above this the adjacent parts. the opportunity does not arise to make a length as there is no pressure retaining spool to the precise length required. Type element beyond the PTFE itself. They are

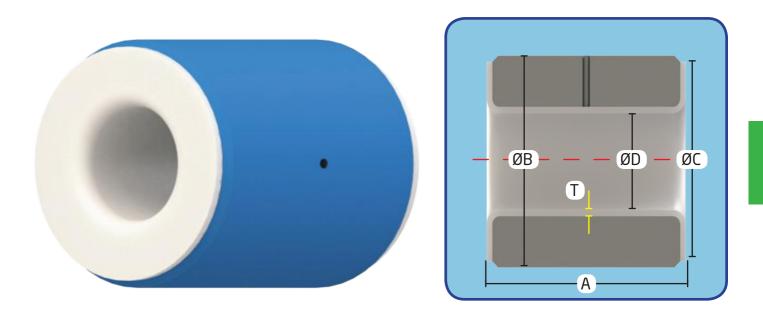
Spacers are used as small gap fillers in 1 spacers have the smallest size range a wafer fitting, with an outside diameter

Spacer ⁻	Spacer Type 1										
			Length		Bore						
		Minimum	Maximum	Outside	Nominal						
Nomina	l Bore		А	ØВ	ØC	Weight					
Inches	mm	mm	mm	mm	mm	kg/mm					
1/2	15	3	25	44	20	0.003					
3⁄4	20	3	25	54	20	0.004					
1	25	3	25	64	25	0.006					
1½	40	3	25	83	38	0.009					
2	50	3	25	102	51	0.013					
3	80	3	25	133	76	0.020					
4	100	3	25	171	102	0.032					
6	150	3	25	219	152	0.042					
8	200	3	25	275	203	0.058					
10	250	3	25	336	254	0.082					
12	300	3	25	405	304	0.119					
14	350	3	25	446	367	0.144					



Spacer Type 1 Tapered

Spacer Type 2



opposite sides of a flange face. This falls.

Type 1 spacers can also be provided can provide a change in the angle of the tapered to a set angle or dimension on pipework, useful for starting or ending

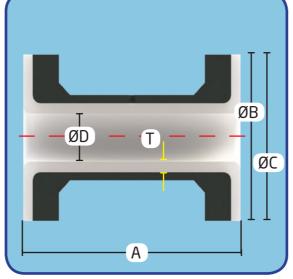
Spacer 1	Spacer Type 1 Tapered											
		Length Minimum Maximum		Outside	Bore Nominal							
Nominal	Bore		A	ØВ	ØC	Weight			Viat	ole An	gles	
Inches	mm	mm	mm	mm	mm	kg/mm	1°	2°	3°	4°	5 ⁰	
1/2	15	3	25	44	20	0.003	Yes	Yes	Yes	Yes	Yes	
3⁄4	20	3	25	54	20	0.004	Yes	Yes	Yes	Yes	Yes	
1	25	3	25	64	25	0.006	Yes	Yes	Yes	Yes	Yes	
1½	40	3	25	83	38	0.009	Yes	Yes	Yes	Yes	Yes	
2	50	3	25	102	51	0.013	Yes	Yes	Yes	Yes	Yes	
3	80	3	25	133	76	0.020	Yes	Yes	Yes	Yes	Yes	
4	100	3	25	171	102	0.032	Yes	Yes	Yes	Yes	Yes	
6	150	3	25	219	152	0.042	Yes	Yes	Yes	Yes	No	
8	200	3	25	275	203	0.058	Yes	Yes	Yes	Yes	No	
10	250	3	25	336	254	0.082	Yes	Yes	Yes	No	No	
12	300	3	25	405	304	0.119	Yes	Yes	Yes	No	No	
14	350	3	25	446	367	0.144	Yes	Yes	No	No	No	

to the precise length required. The type the type 1 spacer. It comprises a hollow

Spacers are used as small gap fillers in 2 spacer is a wafer fitting and should be steel bar with an outside diameter sized a piping system, where the space is too specified for gap filling from the shortest to fit snugly inside the bolt circle of the small for a conventional pipe spool or the size available for the relevant nominal adjacent parts. Tapered type 2 spacers opportunity does not arise to make a spool bore - being a more robust fitting than are also available on request.

Spacer	Spacer Type 2											
			Length			PTFE Liner	Lined					
		Minimum	Maximum	Steel Housing	Raised Face	Thickness Nominal ¹	Bore Nominal ²	Minimum Length	Maximum Length			
Nomina	l Bore		А	ØВ	ØC	Т	ØD	Weight	Weight			
Inches	mm	mm	mm	mm	mm	mm	mm	kg	kg			
1/2	15	26	60	44	35	2.3	16	0.9	0.9			
3⁄4	20	26	60	54	43	2.3	16	1.3	1.4			
1	25	26	60	64	51	3.2	20	1.7	1.9			
1½	40	26	60	83	73	3.2	34	2.2	2.4			
2	50	26	70	102	92	3.2	46	2.9	3.5			
3	80	26	70	133	127	3.2	70	5	6			
4	100	26	70	171	157	4.5	93	9	11			
6	150	26	80	219	216	5.5	143	13	16			
8	200	26	80	276	270	8.5	188	15	21			
10	250	26	80	336	324	9.1	247	19	27			
12	300	26	80	406	381	10.4	286	30	40			
14	350	26	80	447	413	8.3	319	40	52			

1 - Please note liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual. 2 - Bore is based on virgin PTFE heavy duty liner, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the manual



Spacer Type 3

90° Elbow

spool to the precise length required. Type specified in preference to Type 2 spacers

a piping system, where the space is too spool piping, but have stub ends in place length. They have an outside diameter small for a conventional pipe spool or of flanges as conventional bolting would sized to fit snugly inside the bolt circle of the opportunity does not arise to make a not fit in the distance. They should be

Spacers are used as small gap fillers in 3 spacers are manufactured from pipe as soon as the gap meets the minimum the adjacent parts.

Spacer T	уре З								
			Length			PTFE	Lined		
		Minimum	Maximum	Stub End	Raised Face	Liner Thickness ¹	Bore Nominal2	Minimum Length	Maximum Length
Nominal	Bore		A	ØВ	ØC	Т	ØD	Weight	Weight
Inches	mm	mm	mm	mm	mm	mm	mm	kg	kg
1/2	15	61	100	44	35	2.3	20	0.2	0.2
3⁄4	20	61	100	54	43	2.3	20	0.4	0.4
1	25	61	100	64	51	3.2	23	0.5	0.6
1½	40	61	100	83	73	3.2	37	0.9	0.9
2	50	61	150	102	92	3.2	48	1.4	1.6
3	80	71	150	133	127	3.2	75	3	3
4	100	71	150	171	157	4.5	98	3	3
6	150	71	150	216	216	5.5	148	4	5
8	200	81	200	270	270	8.5	191	9	10
10	250	81	200	324	324	9.1	241	6	8
12	300	81	200	381	381	10.4	298	9	11
14	350	81	200	413	413	8.3	326	12	14

1 - Please note liner thicknesses are based on Virgin PTFE heavy duty liner, for other materials consult the liner tables in the manual

2 - Bore is based on virgin PTFE heavy duty liner, because of method of manufacture and steel tolerances this is a guide only for other materials and thicknesses please consult the liner tables in the manual

pipe fittings after the spool, providing a 90° change of direction.

The standard range are dimensioned according to ASME B16.5 and have no specific radius across the size range, from around 3.5 times diameter radius with a 1 inch elbow through to a 1 times diameter radius with a 14 inch elbow. Elbows are wherever possible lined in PFA to provide the permeation and wettability benefits that PFA brings and geometrical accuracy that can be critical in some applications. PFA also brings increased vacuum performance which can be useful in larger line sizes. Non-standard elbows are lined in PTFE as are static-dissipating elbows.

The 90° elbow is the most popular of all Static-dissipating PFA lining is available on each leg can be achieved. When on request.

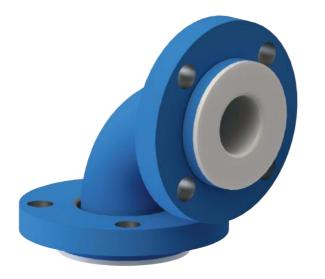

> By dint of their versatility they are used throughout piping systems although one common application is to use an elbow to create a fall in pipework utilising a rotating flange. (See next page).

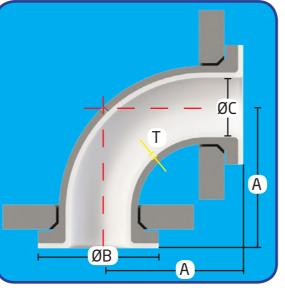
For handling more viscous fluids larger radius elbows are available - typically manufactured at 5D (see the appropriate page), but elbows can be manufactured with various radii and angles up to 180° with 45° being the second most common type and 30° and 60° elbows being relatively popular. Also non-standard centreline to face dimensions and dissimilar centreline to face dimensions

90° Elbo	w								Construc	tion Codes	
				W	all Thickness		Bore		Code	Steelwork	
				PFA					CP	Cast St	
				Heavy	HiPerFlon		PTFE	l l	CT	Cast St	
		Centre		Duty Liner	PTFE Liner	PFA Liner	Liner			abricated St abricated St	
		Line	Raised	Thickness	Thickness	Bore	Bore	L	ri r	abricated St	
		to Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²				
Nomina	l Bore	A	ØВ	Т	Т	ØC	ØC	Con	struc	tion	Weight
Inches	mm	mm	mm	mm	mm	mm	mm	Standard	To C)rder	kg
1/2	15	100	35	-	2.3	-	16	FT		-	1.5
3⁄4	20	75	43	-	2.3	-	20	FT		-	1.5
1	25	89	51	4.0	3.2	20	20	CP	C	T/FT	2.6
1½	40	102	73	4.5	3.2	33	34	CP	C	T/FT	4.0
2	50	114	92	4.8	3.2	44	46	CP	C	T/FT	6.5
3	80	140	127	6.5	3.2	66	70	CP	C	T/FT	12
4	100	165	157	9.0	4.5	86	93	CP	C	T/FT	17
6	150	203	216	11.0	5.5	137	43	CP	C	T/FT	27
8	200	229	270	10.0	8.5	186	188	CP	C	T/FT	56
10	250	279	324	10.0	9.1	237	39	CP	C	T/FT	65
12	300	305	381	10.0	10.4	287	286	CP	C	T/FT	115
14	350	356	413	10.5	8.3	317	319	CP	C	T/FT	140

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner and PFA heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on Virgin PTFE heavy duty liner and schedule 40 or 30 steel pipe and PFA heavy duty liner in castings. Because of the method of manufacture and stee tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a calibrated volume in the product please consult us.

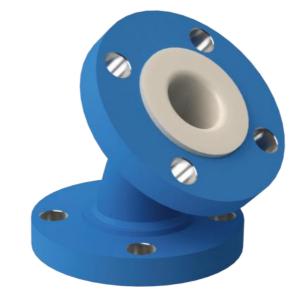
centreline to face dimensions are not provided for special angle elbows, those less than 45° have standard 45° centreline to face dimensions. Those greater than 45° have standard 90° centreline to face dimensions.


The most popular elbow sizes are supplied with a high integrity investment cast steel body and wetted parts are lined with a heavy wall PFA (construction code CP), providing superior permeation resistance and very square flanges. Less popular configurations are lined with paste extruded PTFE, flared over the flange faces in a similar manner to pipe spools.


15

90° Elbow Rotating Flanges

45° Elbow

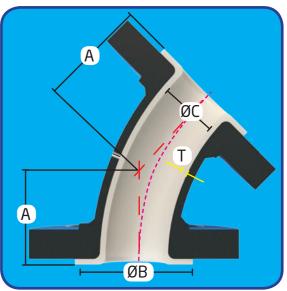

This design of elbow has two rotating provides versatility. The elbow design design makes installation easy and requirements.

flanges captured behind stub ends. This is ideal as a stock item for maintenance

90° Elbo	ow Rotati	ng Flanges			C	onstruction	Codes	-
		Centre Line to Face	Raised Face	HiPerFlon PTFE Liner Thickness Nominal ¹	۵ ۵ ۲ ۲	P T P Fabr	cast Steel Cast Steel Cast Steel ricated Steel	Lining PFA PTFE PFA PTFE
Nomina	l Bore	А	ØВ	ØC	Construct	tion	Wei	ght
Inches	mm	mm	mm	mm	Stand	lard		kg
1/2	15	100	35	16		FT		2.5
3⁄4	20	75	43	20		FT		2.5
1	25	89	51	20		FT		2.6
1½	40	102	73	34		FT	4	4.0
2	50	114	92	46		FT	(6.5
3	80	140	127	70		FT		12
4	100	165	157	93		FT		17
6	150	203	216	143		FT		27
8	200	229	270	188		FT		56
10	250	279	324	239		FT		65
12	300	305	381	286		FT	1	15
14	350	356	413	319		FT	1	40

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner.

2 - Nominal bores are based on Virgin PTFE heavy duty liner and schedule 40 or 30 steel pipe. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a calibrated volume in the product please consult us.


change of direction. These are generally occur otherwise. A metric version is lined in PTFE. Note that a 1 inch 45° available with M12 or M14 tapped holes. elbow does not have through holes in Similar options to those for 90° elbows are the flanges, they are tapped ½ inch UNC available.

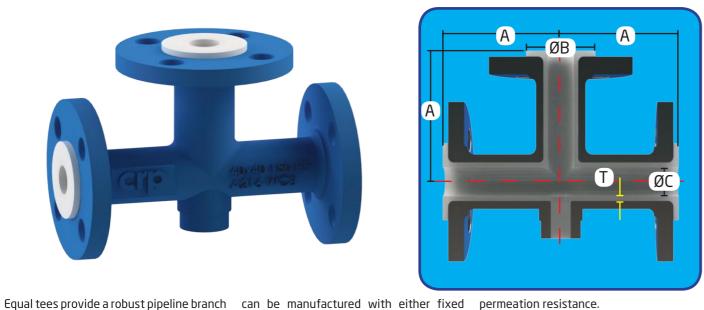
The 45° elbow of course provides a 45° because of the clash of nuts that would

45° Elbo	W						Construction	Codes
		Centre Line to Face	Raised Face	HiPerFlon PTFE Liner Thickness Nominal ¹	PTFE Liner Bore Nominal ²	_	CP CT Fab	teelwork Lining Cast Steel PFA Cast Steel PTFE ricated Steel PTFE ricated Steel PTFE
Nomina	l Bore	A	ØВ	Т	ØC	Co	nstruction	Weight
Inches	mm	mm	mm	mm	mm	Standard	To Order	kg
1/2	15	44	35	2.3	16	FT	-	1.2
3⁄4	20	44	43	2.3	20	FT	-	1.2
1	25	44	51	3.2	20	СТ	FT	2.1
1½	40	57	73	3.2	34	СТ	FT	3.2
2	50	64	92	3.2	46	СТ	FT	5.2
3	80	76	127	3.2	70	СТ	FT	10
4	100	102	157	4.5	93	FT	-	14
6	150	127	216	5.5	143	FT	-	22
8	200	140	270	8.5	188	FT	-	45
10	250	165	324	9.1	239	FT	-	52
12	300	190	381	10.4	286	FT	-	92
14	350	190	413	8.3	319	FT	-	112

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner. For other materials consult the liner dimension tables in this manual 2 - Nominal bores are based on Virgin PTEE heavy duty liner and schedule 40 or 30 steel pipe. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a calibrated volume in the product please consult us. please consult us.

Equal Tee

Equal Tee Rotating Flanges


pipeline itself. They are used for making flange products are the most economical

additions or merging separate flows. Tees solution. The most popular tee sizes are

are manufactured to ASME B16.5 class 150 supplied with a high integrity investment

dimensions, but variations on standard cast steel body and wetted parts lined

dimensions are available on request. They with a heavy wall PFA, providing superior

permeation resistance. of the same nominal bore as the main flanges, rotating flanges or a mix. Fixed

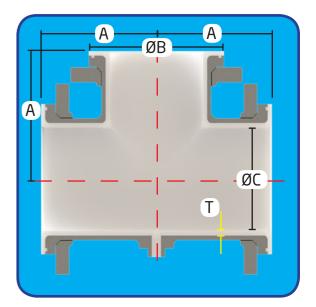
Committed to PFA as a superior lining material for the highest level of performance, CRP is the only global manufacturer producing PFA moulded fittings in up to 14 inch size.

Equal T							Con	truction Codes	
Cquui i							Cod	Steelwork	Lining
				PFA			CP	Cast Steel	
				Heavy Duty			CT FP	Cast Steel Fabricated Steel	+
		Centre		Liner	PFA Liner		FT	Fabricated Steel	
		Line	Raised	Thickness	Bore			<u> </u>	
		to Face	Face	Nominal ¹	Nominal ²				
Nomina	l Bore	А	ØВ	Т	ØC	Cor	nstruction	Wei	ght
Inches	mm	mm	mm	mm	mm	Standard	To Order		kg
1/2	15	65	35	4.5	5 12 FP - 2.		2.0		
3⁄4	20	75	43	4.5	12	FP	-		3.0
1	25	89	51	4.0	19.6	CP	FP		4.0
1½	40	102	73	4.5	33	CP	FP		6.5
2	50	114	92	4.8	44	CP	FP	1	.0.0
З	80	140	127	6.5	66	CP	FP		19
4	100	165	157	9.0	86	CP	FP		27
6	150	203	216	11.0	137	CP	FP		45
8	200	229	270	10.0	186	FP	-		68
10	250	279	324	10.0	237	FP	-		90
12	300	305	381	10.0	287	FP	-	1	185
14	350	356	413	10.5	317	FP	-	2	200

1 - Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.

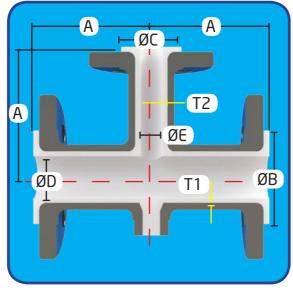
2 - Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty liner and PFA heavy duty liner in castings. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.

flanges captured behind stub ends. This ideal as a stock item for maintenance design makes installation easy and requirements.


This design of tee has three rotating provides versatility. The tee design is

Equal T	ee Rotatii	ng Flanges					Constru	ction Codes	
				DCA		-	Code	Steelwork	Lining
				PFA			СР СТ	Cast Steel Cast Steel	PFA PTFE
		Carta		Heavy Duty	DEAL	-	FP	Fabricated Steel	PFA
		Centre	D · · ·	Liner	PFA Liner		FT	Fabricated Steel	PTFE
		Line	Raised	Thickness	Bore				
		to Face	Face	Nominal ¹	Nominal ²				
Nomina	l Bore	A	ØВ	Т	ØC	Constructio	on	Wei	ght
Inches	mm	mm	mm	mm	mm	Standa	rd		kg
1/2	15	65	35	4.5	12	F	=P		2.0
3⁄4	20	75	43	4.5	12	f	=P		3.0
1	25	89	51	4.0	19.6	f	-P		4.0
1½	40	102	73	4.5	33	f	=P		6.5
2	50	114	92	4.8	44	f	=P		10
3	80	140	127	6.5	66	f	=P		19
4	100	165	157	9.0	86	f	=P		27
6	150	203	216	11.0	137	f	=P		45
8	200	229	270	10.0	186	f	=P		68
10	250	279	324	10.0	237	f	=P		90
12	300	305	381	10.0	287	f	=P	1	.85
14	350	356	413	10.5	317	f	-P	2	200

1 - Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on Virgin PFA heavy duty liner and schedule 40 or 30 steel pipe and PFA heavy duty liner in castings. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.



Reducing Tee

Reducing Tee

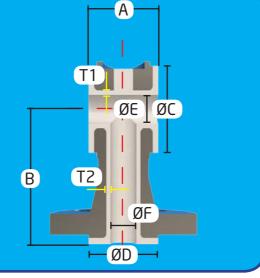
diameter than the main pipeline and are of the branch. Variations on standard for holding or mounting instruments or generally available in every nominal bore dimensions are available on request. For other devices. Fixed flange products are size down from the main branch. They sizes at ½ inch and ¾ inch a larger pipe the most economical solution. The most are used for making additions or merging is used to achieve a reasonable bore popular tee sizes are supplied with a high separate flows. Tees are manufactured and the PFA may have a machined bore integrity investment cast steel body and to ASME B16.5 class 150 dimensions, rather than moulded in situ. They can be wetted parts lined with a heavy wall PFA, with the branch centre-line to face manufactured with either fixed flanges, providing superior permeation resistance. dimension the same as that of the main rotating flanges or a mix. Please advise

Reducing tees have a smaller branch bore irrespective of the nominal bore size us if you require a specific branch bore

Re	duc	ing 1	Гее										Cons	truction Codes	
		-							Line	Branch			Code		Lining
									Heavy Duty	PFA Heavy	Line	Branch	СР	Cast Stee	
						Centre Line	Line Raised	Branch Raised	PFA Liner Thickness	Duty Liner Thickness	PFA Liner Bore	PFA Liner Bore	FP	Fabricated Ste	
						to Face	Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²	FT	Fabricated Ste	el PTFE
Nom	ninal E	Bore				A	В	ØC	T1	T2	ØD	ØE	Con	struction	Weight
Inch	es		mm			mm	mm	mm	mm	mm	mm	mm	Standard	To Order	kg
∛4	х	1/2	20	х	15	75	43	35	4.5	4.5	12	12	FP	-	2.0
1	х	1/2	25	х	15	89	51	35	4.0	4.5	20	12	FP	-	2.6
1	х	3⁄4	25	х	20	89	51	43	4.0	4.5	20	12	FP	-	2.9
1½	х	1/2	40	х	15	102	73	35	4.5	4.5	33	12	FP	-	4.2
1½	х	3∕4	40	х	20	102	73	43	4.5	4.5	33	12	FP	-	4.4
1½	х	1	40	х	25	102	73	51	4.5	4.0	33	20	CP	FP	4.7
2	х	1/2	50	х	15	114	92	35	4.8	4.5	44	12	FP	-	6.3
2	х	3⁄4	50	х	20	114	92	43	4.8	4.5	44	12	FP	-	6.6
2	х	1	50	х	25	114	92	51	4.8	4.0	44	20	CP	FP	6.9
2	х	1½	50	х	40	114	92	73	4.8	4.5	44	33	CP	FP	7.6
З	х	1/2	80	х	15	140	127	35	6.5	4.5	66	12	FP	-	12
З	х	3∕4	80	х	20	140	127	43	6.5	4.5	66	12	FP	-	13
З	х	1	80	х	25	140	127	51	6.5	4.0	66	20	CP	FP	13
З	х	1½	80	х	40	140	127	73	6.5	4.5	66	33	FP	-	14
З	х	2	80	х	50	140	127	92	6.5	4.8	66	44	CP	FP	15
4	х	1/2	100	х	15	165	157	35	9.0	4.5	86	12	FP	-	18
4	х	3⁄4	100	х	20	165	157	43	9.0	4.5	86	12	FP	-	19
4	х	1	100	х	25	165	157	51	9.0	4.0	86	20	CP	FP	19
4	х	1½	100	х	40	165	157	73	9.0	4.5	86	33	FP	-	20
4	х	2	100	х	50	165	157	92	9.0	4.8	86	44	FP	-	21

Re	duc	ing T	ee								1		(Construction Codes	
									Line	1			-	Code Steelwor	
									Heavy	Branch			L H	P Cast	
						Centre	Line	Branch	Duty PFA Liner	PFA Heavy Duty Liner	Line PFA Liner	Branch PFA Liner	I -	P Fabricated	
						Line	Raised	Raised	Thickness	Thickness	Bore	Bore	I H	T Fabricated	
						to Face	Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²	•		ĺ
	inal B	Bore	·			A	В	ØC	T1	T2	ØD	ØE	<u> </u>	onstruction	Weight
Inche			mm			mm	mm	mm	mm	mm	mm	mm	Standard	To Order	kg
4	Х	3	100	Х	80	165	157	127	9.0	6.5	86	66	FP	-	24
6	Х	1/2	150	Х	15	203	216	35	11.0	4.5	137	12	FP	-	31
6	Х	3/4	150	Х	20	203	216	43	11.0	4.5	137	12	FP	-	31
6	Х	1	150	Х	25	203	216	51	11.0	4.0	137	20	FP	-	32
6	Х	1½	150	Х	40	203	216	73	11.0	4.5	137	33	FP	-	33
6	Х	2	150	Х	50	203	216	92	11.0	4.8	137	44	FP	-	34
6	Х	3	150	Х	80	203	216	127	11.0	6.5	137	66	FP	-	37
6	Х	4	150	Х	100	203	216	157	11.0	9.0	137	86	FP	-	40
8	Х	1	200	Х	25	229	270	51	10.0	4.0	186	20	FP	-	48
8	Х	1½	200	Х	40	229	270	73	10.0	4.5	186	33	FP	-	49
8	Х	2	200	Х	50	229	270	92	10.0	4.8	186	44	FP	-	50
8	Х	3	200	Х	80	229	270	127	10.0	6.5	186	66	FP	-	54
8	Х	4	200	Х	100	229	270	157	10.0	9.0	186	86	FP	-	58
8	Х	6	200	Х	150	229	270	216	10.0	11.0	186	137	FP	-	64
10	Х	1	250	Х	25	279	324	51	10.0	4.0	237	20	FP	-	72
10	Х	1½	250	Х	40	279	324	73	10.0	4.5	237	33	FP	-	73
10	Х	2	250	Х	50	279	324	92	10.0	4.8	237	44	FP	-	75
10	Х	3	250	Х	80	279	324	127	10.0	6.5	237	66	FP	-	79
10	Х	4	250	Х	100	279	324	157	10.0	9.0	237	86	FP	-	83
10	Х	6	250	Х	150	279	324	216	10.0	11.0	237	137	FP	-	90
10	Х	8	250	Х	200	279	324	270	10.0	10.0	237	186	FP	-	98
12	х	1	300	х	25	305	381	51	10.0	4.0	287	20	FP	-	105
12	х	1½	300	Х	40	305	381	73	10.0	4.5	287	33	FP	-	107
12	х	2	300	Х	50	305	381	92	10.0	4.8	287	44	FP	-	108
12	х	3	300	Х	80	305	381	127	10.0	6.5	287	66	FP	-	113
12	х	4	300	Х	100	305	381	157	10.0	9.0	287	86	FP	-	117
12	х	6	300	Х	150	305	381	216	10.0	11.0	287	137	FP	-	125
12	х	8	300	х	200	305	381	270	10.0	10.0	287	186	FP	-	134
12	х	10	300	х	250	305	381	324	10.0	10.0	287	237	FP	-	145
14	х	1	350	Х	25	356	413	51	10.5	4.0	317	20	FP	-	143
14	х		350	х	40	356	413	73	10.5	4.5	317	33	FP	-	145
14	х	2	350	Х	50	356	413	92	10.5	4.8	317	44	FP	-	146
14	х	3	350	Х	80	356	413	127	10.5	6.5	317	66	FP	-	151
14	х	4	350	Х	100	356	413	157	10.5	9.0	317	86	FP	-	156
14	х	6	350	х	150	356	413	216	10.5	11.0	317	137	FP	-	164
14	х	8	350	х	200	356	413	270	10.5	10.0	317	186	FP	-	173
14	х	10	350	х	250	356	413	324	10.5	10.0	317	237	FP	-	185
14	х	12	350	х	300	356	413	381	10.5	10.0	317	287	FP	-	202

1 - Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on Virgin PFA heavy duty liner in castings. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.


20

Instrument Tee

fittings in a pipeline system, providing the face dimension of the branch is as ASME functionality of a flanged equal or reducing B16.5 for the nominal bore of the body, tee without the bulk. Their primary use but the body face to face is sized to suit is for the insertion of instrumentation the diameter of the branch nominal bore. above are not possible because of a clash into the flow stream without introducing Smaller branch sizes are most popular with the bolts spanning the wafer fitting. a dead leg. It is important to know that with instrument tees because of their instrument tees are not included in use with instrumentation. If a specific inside the inner bolt circle of the mating ASME B16.5, so the dimensions below bore is required for an instrument please flanges.

Instrument tees are one of the few wafer are specific to CRP. The centreline to discuss this at the time of ordering as sizes are nominal. 3 inch branches are not all possible because of the potential clash with body bolts. Branches of 4 inch and The body diameter is sized to fit neatly

Ins	tru	imen	t Te	е											Constru	uction Codes	
														L H	Code	Steelwork	Lining
							Centre			Line Heavy Duty	Branch Heavy Duty	Line	Branch		CP	Cast Stee	
						Body	Line	Line	Branch	PFA Liner	PFA Liner	PFA Liner	PFA Liner	l P	ст	Cast Stee	+
						Face to	to Face	Raised	Raised	Thickness	Thickness	Bore	Bore	- F	FP FT	Fabricated Stee	
Nom	inal	Bore				Face A	Branch B	Face Ø C	Face Ø D	Nominal ¹ T1	Nominal ¹ T2	Nominal Ø E	Nominal Ø F	L		struction	Weight
-		bole												Chand			
Inch		1(2	mn	<u> </u>	4.5	mm	mm	mm	mm	mm	mm	mm	mm	Stand		To Order	kg
1/2	X	1∕2³	15	х	15	51	65	35	35	4.5	4.5	12	12		-P	-	1.0
∛4	X	1∕2³	20	X	15	51	75	43	35	4.5	4.5	12	12	ſ	=P	-	1.3
3∕4	X	3∕44	20	х	20	51	75	43	43	4.5	4.5	12	12	f	-P	-	1.6
1	x	1∕2³	25	х	15	51	89	51	35	4.0	4.5	20	12	f	=P	-	1.7
1	x	3∕44	25	x	20	51	89	51	43	4.0	4.5	20	12	f	FΡ	-	1.9
1	x	1	25	x	25	51	89	51	51	4.0	4.0	20	20	(CP	FP	2.0
1½	x	1∕2³	40	х	15	51	102	73	35	4.5	4.5	33	12	f	=P	-	2.1
1½	x	3∕44	40	х	20	51	102	73	43	4.5	4.5	33	12	f	=P	-	2.4
1½	x	1	40	х	25	51	102	73	51	4.5	4.0	33	20	(CP	FP	2.6
1½	x	1½	40	x	40	76	102	73	73	4.5	4.5	33	33	(CP	FP	4.0
2	x	1∕₂³	50	х	15	51	114	92	35	4.8	4.5	44	12	ĥ	FΡ	-	3.0
2	х	3∕44	50	х	20	51	114	92	43	4.8	4.5	44	12	f	FΡ	-	3.3
2	x	1	50	х	25	51	114	92	51	4.8	4.0	44	20	(CP	FP	3.5
2	х	1½	50	x	40	76	114	92	73	4.8	4.5	44	33	(CP	FP	5.3
2	x	2	50	х	50	89	114	92	92	4.8	4.8	44	44	(CP	FP	6.9
3	x	1∕₂³	80	х	15	51	140	127	35	6.5	4.5	66	12	ſ	FΡ	-	5
З	x	3∕44	80	х	20	51	140	127	43	6.5	4.5	66	12	ſ	FP	-	5
З	x	1	80	х	25	51	140	127	51	6.5	4.0	66	20	(CP	FP	5
З	x	1½	80	х	40	76	140	127	73	6.5	4.5	66	33	(CP	FP	8
3	x	2	80	х	50	89	140	127	92	6.5	4.8	66	44	(CP	FP	10
22						07			0 9	10-5-200	1802-1	and the second			1	Sad P	1 - N

Inst	ru	men	t Tee					1	1						Const	ruction Codes	
							Centre			Line Heavy Duty	Branch Heavy Duty	Line	Branch		Code CP	Steelwork Cast St	eel PFA
						Body Face to Face	Line to Face Branch	Line Raised Face	Branch Raised Face	PFA Liner Thickness Nominal ¹	PFA Liner Thickness Nominal ¹	PFA Liner Bore Nominal	PFA Liner Bore Nominal		CT FP FT	Cast St Fabricated St Fabricated St	eel PFA
Nomir	nal F	Bore				A	B	ØC	ØD	T1	T2	ØE	ØF			struction	Weight
Inches			mm			mm	mm	mm	mm	mm	mm	mm	mm	Stand		To Order	kg
4	x	3∕44	100	x	20	51	165	157	43	9.0	4.5	86	12	F	P	-	8
4	x	1	100	x	25	51	165	157	51	9.0	4.0	86	20	C	P	FP	8
4	x	1½	100	x	40	76	165	157	73	9.0	4.5	86	33	C	P	FP	12
4 ⁵	x	2	100	x	50	89	165	157	92	9.0	4.8	86	44	C	P.	FP	14
6	x	1⁄23	150	x	15	51	203	216	35	11.0	4.5	137	12	F	P	-	9
6	x	3∕44	150	x	20	51	203	216	43	11.0	4.5	137	12	F	P	-	9
6	x	1	150	x	25	51	203	216	51	11.0	4.0	137	20	C	P.	FP	10
6	x	1½	150	x	40	76	203	216	73	11.0	4.5	137	33	C	P.	FP	14
6	x	2	150	x	50	89	203	216	92	11.0	4.8	137	44	C	:P	FP	18
66	x	3	150	x	80	150	203	216	127	11.0	6.5	137	66	F	P	-	30
8	x	1	200	x	25	51	229	270	51	10.0	4.0	186	20	F	P	-	5
8	x	1½	200	x	40	76	229	270	73	10.0	4.5	186	33	F	P	-	8
8	х	2	200	x	50	89	229	270	92	10.0	4.8	186	44	F	P	-	10
8	х	З	200	x	80	150	229	270	127	10.0	6.5	186	66	F	P	-	18
10	x	1	250	x	25	51	279	324	51	10.0	4.0	237	20	F	P	-	18
10	x	1½	250	x	40	76	279	324	73	10.0	4.5	237	33	F	P	-	27
10	x	2	250	X	50	89	279	324	92	10.0	4.8	237	44	F	P	-	33
12	x	1	300	X	25	51	305	381	51	10.0	4.0	287	20	F	P	-	24
12	x	1½	300	x	40	76	305	381	73	10.0	4.5	287	33	F	P	-	36
12	x	2	300	X	50	89	305	381	92	10.0	4.8	287	44		P	-	43
127	x	3	300	X	80	150	305	381	127	10.0	6.5	287	66	F	P	-	74
14	x	1	350	X	25	51	356	413	51	10.5	4.0	317	20		P	-	30
14	x	1½	350	X	40	76	356	413	73	10.5	4.5	317	33		P	-	44
14	x	2	350	X	50	89	356	413	92	10.5	4.8	317	44		P	-	53
14	х	З	350	х	80	150	356	413	127	10.5	6.5	317	66	F	P	-	89

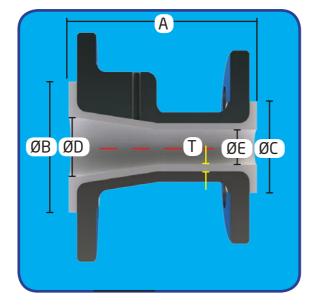
1 - Please note liner thicknesses are based on Virgin PFA, for other materials consult the liner tables in the manual.

3 - On 1/2in branch a 3/4in pipe is used.

4 - On 3/4in branch a 1in pipe is used.

5 - Because of the need to pass through the line bolts the branch has a reduced bore in a 1.1/2in pipe. 6 - Because of the need to pass through the line bolts the branch has a reduced bore in a 2in pipe.

7 - Only with UNC bolting.


2 - Bore is based on Virgin PFA, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the manual

Concentric Reducer

Concentric Reducer

reducing (or growing) concentrically from for the movement of slurries, where

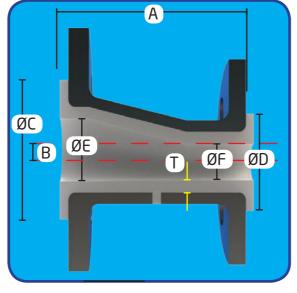
24

These provide for a gradual reduction one bore size to another through one or cavitation is present and on the discharge in bore on the centreline of the pipeline, several size reductions. They are useful side of pumps.

Con	icer	ntric	Reduc	er										Construction Codes	
						Face to Face	Large NB Raised Face	Small NB Raised Face	Heavy Duty PFA Liner Thickness Nominal ¹	HiPerFlon PTFE Liner Thickness Nominal ¹	Large Bore Nominal ²	Small Bore Nominal ²			Steel PFA Steel PTFE Steel PFA
Nomi		ore I				A	ØВ	ØC	Т	Т	ØD	ØE		Construction	Weight
Inche	-		mm			mm	mm	mm	mm	mm	mm	mm	Standard	To Order	kg
3⁄4	Х	1/2	20	Х	15	114	43	35	-	2.3	12	12	FT	-	1.3
1	Х	1/2	25	Х	15	114	51	35	-	3.2	20	12	FT	-	1.5
1	Х	3⁄4	25	Х	20	114	51	43	-	3.2	20	12	FT	-	1.8
1½	Х	3⁄4	40	Х	20	114	73	43	-	3.2	33	12	FT	-	2.3
1½	Х	1	40	Х	25	114	73	51	-	3.2	33	20	СТ	FT	2.7
2	Х	1	50	Х	25	127	92	51	4.8	-	44	20	СР	FP	3.7
2	Х	1½	50	Х	40	127	92	73	4.8	3.2	44	33	СТ	CP/FP/FT	4.2
З	Х	1	80	х	25	152	127	51	6.5	-	66	20	CP	FP	6
3	х	1½	80	Х	40	152	127	73	6.5	-	66	33	СР	FP	7
З	х	2	80	х	50	152	127	92	6.5	3.2	66	44	СТ	CP/FP/FT	8
4	х	1	100	х	25	178	157	51	9.0	-	86	20	CP	FP	9
4	х	1½	100	х	40	178	157	73	9.0	-	86	33	CP	FP	10
4	х	2	100	х	50	178	157	92	9.0	-	86	44	CP	FP	11
4	х	3	100	х	80	178	157	127	9.0	4.5	86	66	СТ	CP/FP/FT	13
6	х	2	150	х	50	229	216	92	11.0	-	137	44	СР	FP	17
6	х	3	150	х	80	229	216	127	11.0	-	137	66	СР	FP	19
6	х	4	150	х	100	229	216	157	11.0	5.5	137	86	СТ	CP/FP/FT	20
8	х	3	200	х	80	279	270	127	10.0	-	186	66	FP	-	28
8	х	4	200	х	100	279	270	157	10.0	-	186	86	FP	-	30
8	х	6	200	х	150	279	270	216	-	8.5	186	137	FT	-	33
10	х	4	250	х	100	305	324	157	10.0	-	237	66	FP	-	40
10	х	6	250	х	150	305	324	216	-	9.1	237	137	FT	-	43

Conce	enti	ric F	Reduce	er									C	nstruction Codes	
													C	de Steelwor	k Lining
									Heavy Duty	HiPerFlon			C	Cast S	iteel PFA
							Large NB	Small NB	PFA Liner	PTFE Liner	Large	Small	C	Cast S	iteel PTFE
						Face	Raised	Raised	Thickness	Thickness	Bore	Bore	FI	Fabricated S	iteel PFA
	minal Bore					to Face	Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²	F	Fabricated S	iteel PTFE
Nominal						А	ØВ	ØC	Т	Т	ØD	ØE		Construction	Weight
Inches			mm			mm	mm	mm	mm	mm	mm	mm	Standar	I To Order	kg
10	х	8	250	х	200	305	324	270	-	9.1	237	186	F	-	49
12	х	4	300	х	100	356	381	157	10.0	-	287	66	FI	- 10	58
12	х	6	300	х	150	356	381	216	10.0	-	287	137	FI		62
12	х	8	300	Х	200	356	381	270	-	10.4	287	186	F		66

1 - Liner thicknesses are based on PFA heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty liner. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.



Eccentric Reducer

Eccentric Reducer

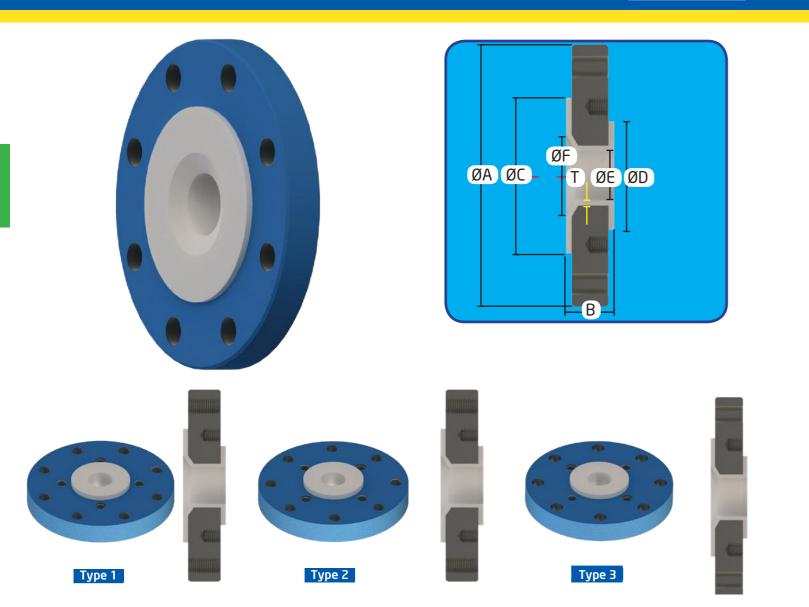
Eccentric reducers have a changing pipe. The gradual accumulation of air in up this is avoided. Alternatively eccentric ensure air does not accumulate in the drawn into the pump, with the flat side

26

centreline for the bore, with one side a concentric reducer could result in a large reducers can be useful with the flat side remaining parallel. Eccentric reducers bubble that could eventually cause the down to allow the complete draining of a are used at the suction side of pumps to pump to stall or cause cavitation when pipeline.

Ec	cen	tric F	Reduc	er										Co	nstruction Codes	
				<u>.</u>		Face to Face	Centreline Offset	Large NB Raised Face	Small NB Raised Face	Heavy Duty PFA Liner Thickness Nominal ¹	HiPerFlon PTFE Liner Thickness Nominal ¹	Large Bore Nominal ²	Small Bore Nominal ²	ده ۲ ۲ ۲	Cast St Cast St	ieel PFA ieel PTFE ieel PFA
Nor	ninal I	Bore				A	В	ØC	ØD	Т	Т	ØD	ØE	(Construction	Weig
Inch	nes		mm			mm	mm	mm	mm	mm	mm	mm	mm	Standard	To Order	
∛4	х	1/2	20	Х	15	114	3	43	35	-	2.3	12	12	FT	-	1
1	Х	1/2	25	Х	15	114	6	51	35	4	3.2	20	12	FP	FT	1
1	х	3⁄4	25	х	20	114	3	51	43	-	3.2	20	12	FT	-	1
1½	х	3∕4	40	х	20	114	11	73	43	-	3.2	33	12	FT	-	2
1½	х	1	40	х	25	114	7	73	51	4.5	3.2	33	20	CP	FP/FT	2
2	х	1	50	х	25	127	13	92	51	4.8	-	44	20	CP		Э
2	х	1½	50	х	40	127	6	92	73	4.8	3.2	44	33	CP	CT/FP/FT	4
З	х	1	80	х	25	152	28	127	51	6.5	-	66	20	CP	-	
З	х	1½	80	х	40	152	20	127	73	6.5	-	66	33	CP	-	
З	х	2	80	х	50	152	14	127	92	-	3.2	66	44	FT	-	
4	х	1	100	х	25	178	40	157	51	9.0	-	86	20	FP	-	
4	х	1½	100	х	40	178	33	157	73	9.0	-	86	33	FP	-	-
4	х	2	100	х	50	178	27	157	92	9.0	-	86	44	CP	-	
4	х	З	100	х	80	178	13	157	127	9.0	-	86	66	CP	-	1
6	х	2	150	х	50	229	54	216	92	11.0	-	137	44	FP	-	1
6	х	З	150	х	80	229	40	216	127	11.0	-	137	66	FP	-	1
6	х	4	150	х	100	229	27	216	157	-	5.5	137	86	FT	-	2
8	х	З	200	х	80	279	65	270	127	10.0	-	186	66	FP	-	2
8	х	4	200	х	100	279	52	270	157	10.0	-	186	86	FP	-	
8	х	6	200	х	150	279	25	270	216	-	8.5	186	137	FT	-	3
10	х	4	250	х	100	305	79	324	157	10.0	-	237	66	FP	-	4
10	х	6	250	х	150	305	52	324	216	-	9.1	237	137	FT	-	4

Fccer	ntric	Reduce	r									Cor	struction Codes	
				1						1		Cor	le Steelwork	Lining
								Heavy Duty	HiPerFlon			CP	Cast Ste	eel PFA
					Controling	Large NB	Small NB	PFA Liner	PTFE Liner	Large	Small	СТ	Cast Ste	el PTFE
				Face to Face	Centreline Offset	Raised Face	Raised Face	Thickness Nominal ¹	Thickness Nominal ¹	Bore Nominal ²	Bore Nominal ²	FP	Fabricated Ste	
								Norminar	Norman			FT	Fabricated Ste	
Nominal	Bore			A	В	ØC	ØD	Т	T	ØD	ØE		Construction	Weight
Inches		mm		mm	mm	mm	mm	mm	mm	mm	mm	Standard	To Order	kg
10 x	8	250 x	200	305	27	324	270	-	9.1	237	186	FT	-	49
12 x	4	300 x	100	356	105	381	157	10.0	-	287	66	FP	-	58
12 x	6	300 x	150	356	78	381	216	10.0	-	287	137	FP	-	62
12 x	8	300 x	200	356	52	381	270	10.0	-	287	186	FP	-	66
12 x	10	300 x	250	356	25	381	324	-	10.4	287	237	FT	-	72
14 x	6	350 x	150	406	94	413	216	10.5	-	317	137	FP	-	81
14 x	8	350 x	200	406	68	413	270	10.5	-	317	186	FP	-	86
14 x	10	350 x	250	406	41	413	324	10.5	-	317	237	FP	-	91
14 x	12	350 x	300	406	16	413	381	-	8.3	317	287	FT	-	102


1 - Liner thicknesses are based on PFA heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty line. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.

Reducing Flange Taper Bore

Reducing Flange Taper Bore

A reducing flange is essentially a plate flange providing a sharp reduction in line bore of one or many size reductions.

A taper bore provides some transtion from one bore to another. These are generally PFA lined, but can be lined in PTFE. They provide a more space saving alternative to concentric reducers, but cannot present the same flow characteristics.

Reducing flanges can be grouped into three main configurations - type 1, 2 & 3. The configuration is dictated by the the large bore bolt holes. Each type is flange designed so that they do not clash and that the nuts can be fitted successfully. Type 3 flanges have through clearance holes for the large nominal bore bolts and blind threaded holes for the small nominal bore. These are used where there is a

significant reduction in bores. Where the reduction is not so great and the periphery of the smaller bore mating flange would impinge on the nuts then a type 2 flange is employed with all threaded bolt holes (through holes for the large nominal bore and blind holes for the small nominal bore) negating the use of nuts. Finally where the reduction in bores is quite small the bolt holes are all threaded with through holes for the large nominal bore and blind holes for the small nominal bore. These have to be staggered on/off centres so proximity of the small bore bolt holes to that they don't clash - a type 1 reducing

> As a general rule, a type 3 is the default design. if this cannot be achieved because of the two joining flanges geometry, a type 2 is specified, and if this doesn't

work, then a type 1.

If you have site reasons for wanting to select another style, then a type 1 or 2 will always work where a type 3 does and a type 1 where a type 2 does. As standard Type 2 and 3 bolt holes are off/off centres.

There is another style of reducing flange available where the inner pattern of holes is on a raised platform and the outer holes are scalloped from this. This enables one to use type 3 style drillings i.e. through bolts on the large side, removing the necessity to have double threaded holes on the reducing flange. This is useful where one is coming up against items such as a threaded pad flange on a vessel. CRP can produce these and many other special reducing flanges just call us to discuss.

Re	duc	ing	Flang	ge T	aper	Bore										ruction Codes	
				<u> </u>	-			Face to	Large NB Raised	Small NB Raised	Minimum Heavy Duty PFA Liner	Minimum HiPerFlon PTFE Liner	Large	Small	Code CP CT FP	Steelwork Cast St Cast St Fabricated St	teel PFA teel PTFE
Nom	inal Bo	ITO					Flange Ø A	Face B	Face Ø C	Face Ø D	Thickness ¹ T	Thickness ¹ T	Bore ² Ø E	Bore ² Ø F	FT	Fabricated St	eel PTFE Weigh
Inch			mm			Flange Type	mm	mm	mm	mm		mm	mm	mm	Standard		k
3∕4	х	1/2	20	х	15	Type 1	100	30	43	35	5	3	15	15	FP	FT	1.3
1	х	1/2	25	х	15	Type 1	110	30	51	35	5	З	18	15	FP	FT	1.6
1	х	3⁄4	25	х	20	Type 1	110	30	51	43	5	3	18	15	FP	FT	1.6
1½	х	1/2	40	х	15	Type 2	125	30	73	35	5	З	32	15	FP	FT	2.1
1½	х	3⁄4	40	х	20	Type 1	125	30	73	43	5	З	32	15	FP	FT	2.1
1½	х	1	40	х	25	Type 1	125	30	73	51	5	3	32	18	FP	FT	2.0
2	х	1/2	50	х	15	Type 2	150	30	92	35	5	3	43	15	FP	FT	3.0
2	х	3⁄4	50	х	20	Type 2	150	30	92	43	5	3	43	15	FP	FT	3.0
2	х	1	50	х	25	Type 2	150	30	92	51	5	З	43	18	FP	FT	3.0
2	х	1½	50	Х	40	Type 1	150	30	92	73	5	З	43	32	FP	FT	2.9
3	х	½	80	х	15	Туре З	190	35	127	35	5	З	70	15	FP	FT	e
3	х	3⁄4	80	Х	20	Туре З	190	35	127	43	5	3	70	15	FP	FT	6
З	Х	1	80	Х	25	Туре З	190	35	127	51	5	3	70	18	FP	FT	e
3	Х	1½	80	Х	40	Type 2	190	35	127	73	5	3	70	32	FP	FT	е
3	Х	2	80	Х	50	Type 1	190	35	127	92	5	3	70	43	FP	FT	6
4	Х	1/2	100	Х	15	Туре З	230	35	157	35	5	5	93	15	FP	FT	9
4	Х	3⁄4	100	Х	20	Туре З	230	35	157	43	5	5	93	15	FP	FT	9
4	Х	1	100	Х	25	Туре З	230	35	157	51	5	5	93	18	FP	FT	0
4	Х	1½	100	Х	40	Туре З	230	35	157	73	5	5	93	32	FP	FT	9
4	Х	2	100	Х	50	Туре З	230	35	157	92	5	5	93	43	FP	FT	9
4	Х	3	100	Х	80	Type 1	230	35	157	127	5	5	93	70	FP	FT	8
6	Х	1/2	150	Х	15	Туре З	280	40	216	35	5	5	145	15	FP	FT	16
6	Х	3⁄4	150	Х	20	Туре З	280	40	216	43	5	5	145	15	FP	FT	16
6	Х	1	150	Х	25	Туре З	280	40	216	51	5	5	145	18	FP CD	FT	16
6	Х	1½	150	Х	40	Туре З	280	40	216	73	5	5	145	32	FP	FT	16
6	X	2	150	X	50	Type 3	280	40	216	92	5	5	145	43	FP FP	FT FT	16
6	X	3	150	X	80	Type 3	280	40 40	216	127 157	5	5	145	70	FP FP	F1 FT	15
6 8	X	4 ½	150 200	X	100 15	Type 2 Type 3	280 345	40 40	216 270	35	5	5	145 196	93 15	FP FT	F1 FP	25
8	x x	92 3⁄4	200	X X	20	Туре 3 Туре 3	345	40	270	43	5	5	196	15	FT FT	FP FP	25
8	x	1	200	X	20	Туре З	345	40	270	45 51	5	5	190	13	FT	FP	25
8	x	1½	200	×	40	Type 3	345	40	270	73	5	5	196	32	FT	FP	25
8	x	2	200	×	50	Туре З	345	40	270	92	5	5	196	43	FT	FP	25
8	x	3	200	x	80	Туре З	345	40	270	127	5	5	196	70	FT	FP	24
8	x	4	200	x	100	Туре З	345	40	270	157	5	5	196	93	FT	FP	24
8	x	6	200	X	150	Type 2	345	40	270	216	5	5	196	145	FT	FP	21
10	x	1/2	250	x	15	Туре З	405	35	324	35	5	5	250	15	FT	FP	35
10	x	3/4	250	x	20	Туре З	405	35	324	43	5	5	250	15	FT	FP	35
10	x	1	250	x	25	Туре З	405	35	324	51	5	5	250	18	FT	FP	35
10	x	- 1½	250	x	40	Туре З	405	35	324	73	5	5	250	32	FT	FP	35
10	x	2	250	x	50	Туре З	405	35	324	92	5	5	250	43	FT	FP	35
10	x	3	250	x	80	Туре З	405	35	324	127	5	5	250	70	FT	FP	34

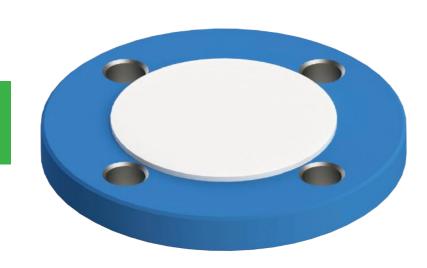
Reducing Flange Taper Bore

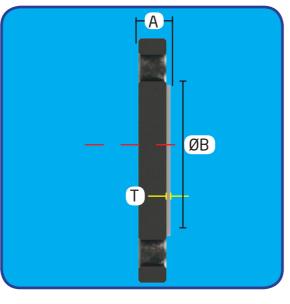
30

Reducing Flange Taper Bore

Image Image <th< th=""><th>Re</th><th>duo</th><th>ing</th><th>Flan</th><th>ge ⁻</th><th>Taper</th><th>Bore</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>F</th><th>Construction Codes</th><th>k Lining</th></th<>	Re	duo	ing	Flan	ge ⁻	Taper	Bore									F	Construction Codes	k Lining
Image Image <th< th=""><th></th><th></th><th></th><th></th><th><u> </u></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Heavy Duty</th><th>HiPerFlon</th><th>Large</th><th>Small</th><th></th><th>CP Cast S</th><th>Steel PFA Steel PTFE</th></th<>					<u> </u>							Heavy Duty	HiPerFlon	Large	Small		CP Cast S	Steel PFA Steel PTFE
issue issue <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Flange</th><th>Face to Face</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Ľ</th><th>FT Fabricated S</th><th>iteel PTFE</th></tr<>								Flange	Face to Face							Ľ	FT Fabricated S	iteel PTFE
10 x 4 250 x 100 Type 3 405 35 324 157 5 55 250 145 FT FP 34 10 x 6 250 x 150 Type 3 405 35 324 270 5 5 250 145 FT FP 37 10 x 4 300 x 170 74 485 400 381 43 5 5 301 15 FT FP 56 12 x 1 300 x 50 Type 3 485 40 381 51 5 301 43 FT FP 55 12 x 3 300 x 80 Type 3 485 40 381 126 5 301 143 FT FP 51 12 x 4 300 x 150 Type 3 4																Canadard	1	
10 x 6 250 x 150 Type 3 405 35 224 216 5 5 250 145 FT FP 231 10 x % 300 x 15 TYpe 3 485 400 381 35 5 301 15 FT FP 56 12 x 1 300 x 20 Type 3 485 40 381 51 5 501 12 15 FT FP 55 12 x 1 300 x 40 Type 3 485 40 381 92 5 301 40 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 270 5 50 301 493 FT FP 51 12 x 10 300 x 200 Type 3 <			1		~	100								_				
10 x 8 250 x 200 Type 2 405 35 224 270 5 5 55 55 101 15 FT FP 56 12 x 14 300 x 15 Type 3 485 400 381 435 5 5 301 15 FT FP 56 12 x 16 300 x 20 Type 3 485 40 381 73 5 5 301 42 FT FP 55 12 x 3 300 x 80 Type 3 485 40 381 127 5 301 145 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 126 5 301 145 FT FP 54 12 x 6 300 x 15	-									-								
12 x ½ 300 x 15 Type 3 485 40 381 35 5 5 301 15 FT FP 56 12 x 1 300 x 20 Type 3 485 40 381 51 5 301 15 FT FP 56 12 x 1 300 x 25 Type 3 485 40 381 73 5 301 33 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 127 5 5 301 43 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 127 5 5 301 145 FT FP 51 12 x 1 300 x 200 Type 3 535 40 413 55 5 301 145 FT FP 71	-																	
12 x % 300 x 20 Type 3 485 40 381 43 5 5 301 15 FT FP 56 12 x 1% 300 x 40 Type 3 485 40 381 51 5 5 301 32 FT FP 55 12 x 1% 300 x 50 Type 3 485 40 381 92 5 5 301 43 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 127 5 5 301 45 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 226 5 301 45 FT FP 51 12 x 10 350 x 200 Type 3 535 40 413 43 5 526 15 FT FP 71	-													<u> </u>				
12 x 1 300 x 25 Type 3 485 40 381 73 5 5 301 32 FT FP 55 12 x 2 300 x 50 Type 3 485 40 381 73 5 5 301 32 FT FP 55 12 x 2 300 x 50 Type 3 485 40 381 127 5 5 301 43 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 226 5 5 301 145 FT FP 54 12 x 1 300 x 50 Type 3 555 40 413 73 5 53 301 156 FT FP 51 14 x 1 350 x 20 Type 3 535 40 413 73 55 26 15 57 76 <td></td> <td><u> </u></td>																		<u> </u>
12 x 1% 300 x 400 Type 3 485 400 381 92 5 5 301 43 FT FP 55 12 x 3 300 x 600 Type 3 485 400 381 127 5 5 301 43 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 127 5 5 301 445 FT FP 55 12 x 8 300 x 100 Type 3 485 40 381 270 5 5 301 455 FT FP 74 14 x 10 300 x 200 Type 3 535 400 413 55 5 326 15 FT FP 72 14 x 1 350 x 50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
12 x 2 300 x 50 Type 3 485 40 381 92 5 5 301 43 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 127 5 5 301 70 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 216 5 5 301 196 FT FP 41 12 x 10 300 x 250 Type 3 485 40 381 324 5 5 301 250 FT FP 41 14 x % 350 x 15 Type 3 535 40 413 35 5 326 15 FT FP 72 14 x 13 350 x 40 Type 3 535 40 413 127 5 5 326 132 FT <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
12 x 3 300 x 800 Type 3 485 40 381 127 5 5 301 70 FT FP 55 12 x 4 300 x 100 Type 3 485 40 381 127 5 5 301 145 FT FP 54 12 x 10 300 x 150 Type 3 485 40 381 224 5 5 301 145 FT FP 47 14 x % 350 x 15 Type 3 535 40 413 35 5 326 15 FT FFP 47 14 x 1/3 350 x 50 Type 3 535 40 413 73 5 326 12 FT FFP 71 14 x 1/3 350 x 100 Type 3 535 40 413 127 5 5 326 130 FT FFP																		
12 x 4 300 x 100 Type 3 485 40 381 157 5 5 301 93 FT FP 54 12 x 6 300 x 150 Type 3 485 40 381 226 5 5 301 145 FT FP 51 12 x 10 300 x 200 Type 3 485 40 381 220 5 5 301 155 55 301 FT FP 41 14 x 14 350 x 20 Type 3 535 40 413 43 5 52 326 115 FT FP 72 14 x 1 350 x 40 792 535 40 413 127 5 5 326 18 FT FP 71 14 x 3 50 x 100 Type 3 535 40 413 127 5 5 3							5.											
12 x 6 300 x 150 Type 3 485 440 381 216 5 50 101 145 FT FP 51 12 x 10 300 x 200 Type 3 485 400 381 324 5 50 301 196 FT FP 47 14 x ½ 350 x 15 Type 3 535 400 413 35 5 53 301 156 FT FP 72 14 x ½ 350 x 25 Type 3 535 400 413 51 5 5 326 15 FT FP 72 14 x 1 350 x 400 Type 3 535 400 413 127 5 5 326 70 FT FP 70 14 x 3 350 x 100 Type 3 535 400 413 1216 5 5 326 70																		
12 x 8 300 x 200 Type 3 485 440 381 270 5 5 301 196 FT FP 47 12 x 10 300 x 250 Type 3 535 400 413 355 5 55 301 250 FT FP 72 14 x 1 350 x 155 Type 3 535 400 413 55 5 326 18 FT FP 72 14 x 1/b 350 x 50 Type 3 535 400 413 51 5 326 18 FT FP 71 14 x 1/b 350 x 80 Type 3 535 40 413 127 5 5 326 18 FT FP 70 14 x 4 350 x 100 Type 3 535 40 413 324 5 5 326 145 FT FP																		
12 x 10 300 x 250 Type 2 485 40 381 324 55 50 50 77 F7 F7 F7 72 14 x ½ 350 x 20 Type 3 535 40 413 35 55 326 15 F7 F7 F7 72 14 x 1 350 x 20 Type 3 535 40 413 51 55 326 18 F7 F7 77 14 x 1 350 x 50 Type 3 535 40 413 52 55 326 43 FT FP 71 14 x 3 50 x 80 Type 3 535 40 413 127 5 53 26 43 FT FP 70 14 x 6 350 x 100 Type 3 535 40 413 216 55 326 105 FT FP <																		
14 x y 350 x 15 Type 3 535 40 413 335 5 5 326 15 FT FP 72 14 x 1 350 x 20 Type 3 535 40 413 43 55 55 326 15 FT FP 72 14 x 1/4 350 x 40 Type 3 535 40 413 73 55 526 12 FT FP 71 14 x 2 350 x 400 Type 3 535 40 413 72 5 526 70 FT FP 70 14 x 4 350 x 100 Type 3 535 40 413 216 5 326 145 FT FP 70 14 x 10 550 x 200 Type 3 555		X			Х		<u> </u>											
14 x ½ 350 x 20 Type 3 535 40 413 43 5 5 326 15 FT FP 72 14 x 1/4 350 x 25 Type 3 535 40 413 51 5 5 326 18 FT FP 72 14 x 1/4 350 x 40 Type 3 535 40 413 73 5 5 326 32 FT FP 71 14 x 2 350 x 80 Type 3 535 40 413 127 5 5 326 70 FT FP 70 14 x 4 350 x 100 Type 3 535 40 413 216 5 5 326 70 FT FP 70 14 x 10 350 x 200 Type 3 535 40 413 381 5 5 326 931 F		Х			Х													
14 x 1 350 x 2.5 Type 3 535 4.0 413 51 5 5 326 18 FT FP 72 14 x 1% 350 x 40 Type 3 535 40 413 73 5 5 326 32 FT FP 71 14 x 3 350 x 80 Type 3 535 40 413 127 5 5 326 70 FT FP 70 14 x 4 350 x 100 Type 3 535 40 413 127 5 5 326 145 FT FP 70 14 x 6 350 x 100 Type 3 535 40 413 324 5 326 150 FT FP 67 14 x 12 350 x 300 Type 3 595 40 413 381 5 5 377 15 FT <t< td=""><td></td><td>Х</td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td></t<>		Х			Х									<u> </u>				
14 x 1½ 350 x 40 Type 3 535 40 413 73 55 526 326 32 FT FP 71 14 x 2 350 x 50 Type 3 535 40 413 92 5 5 326 43 FT FP 71 14 x 4 350 x 80 Type 3 535 40 413 127 5 5 326 70 FT FP 70 14 x 4 350 x 100 Type 3 535 40 413 216 5 526 195 FT FP 70 14 x 10 350 x 200 Type 3 535 40 413 321 5 526 196 FT FP 62 14 x 12 350 x 100 Type 3 595 40 470 35 5 377 15 FT FP 94		Х			Х	-												- 1
14 x 2 350 x 50 Type 3 535 40 413 92 5 53 643 FT FP 71 14 x 3 350 x 80 Type 3 535 40 413 127 5 5 326 70 FT FP 70 14 x 4 350 x 100 Type 3 535 40 413 157 5 5 326 93 FT FP 70 14 x 6 350 x 150 Type 3 535 40 413 2216 5 5 326 145 FT FP 62 14 x 10 350 x 200 Type 3 535 40 413 324 5 5 326 101 FT FP 62 14 x 12 350 x 300 Type 3 555 40 470 73 5 5 377 15 FT <t< td=""><td>14</td><td>Х</td><td>1</td><td></td><td>Х</td><td>25</td><td></td><td>535</td><td>40</td><td>413</td><td></td><td></td><td></td><td>326</td><td></td><td></td><td></td><td></td></t<>	14	Х	1		Х	25		535	40	413				326				
14 x 3 350 x 80 Type 535 40 413 127 5 55 326 70 F1 FP 70 14 x 4 350 x 100 Type 3 535 40 413 157 5 5 326 93 F1 FP 70 14 x 6 350 x 150 Type 3 535 40 413 216 5 5 326 145 FT FP 67 14 x 10 350 x 200 Type 3 535 40 413 324 5 5 326 100 FT FP 62 14 x 12 350 x 300 Type 3 555 40 470 35 5 377 15 FT FP 94 16 x 1 400 x 20 Type 3 595 40 470 55 5 377 15 FT FP <td< td=""><td>14</td><td>Х</td><td>1½</td><td>350</td><td>Х</td><td>40</td><td></td><td>535</td><td>40</td><td>413</td><td>73</td><td></td><td></td><td>326</td><td>32</td><td>FT</td><td>FP</td><td></td></td<>	14	Х	1½	350	Х	40		535	40	413	73			326	32	FT	FP	
14 x 4 350 x 100 Type 3 535 400 413 157 55 326 93 FT FP 70 14 x 6 350 x 150 Type 3 535 40 413 216 55 55 326 145 FT FP 66 14 x 10 350 x 200 Type 3 535 40 413 324 5 526 126 145 FT FP 66 14 x 12 350 x 300 Type 3 535 40 413 381 5 526 326 301 FT FP 94 16 x 14 400 x 150 Type 3 595 40 470 51 55 377 15 FT FP 94 16 x 1 400 x 100 Type 3 </td <td>14</td> <td>Х</td> <td>2</td> <td>350</td> <td>Х</td> <td>50</td> <td>Туре З</td> <td>535</td> <td>40</td> <td>413</td> <td>92</td> <td>5</td> <td>5</td> <td>326</td> <td>43</td> <td>FT</td> <td>FP</td> <td>71</td>	14	Х	2	350	Х	50	Туре З	535	40	413	92	5	5	326	43	FT	FP	71
14 x 6 350 x 150 Type 3 535 40 413 216 55 326 145 FT IFP 67 14 x 8 350 x 200 Type 3 535 40 413 324 55 326 196 FT IFP 62 14 x 12 350 x 300 Type 3 535 40 413 381 5 5 326 301 FT IFP 55 16 x ½ 400 x 15 Type 3 595 40 470 35 5 5 377 15 FT IFP 94 16 x 1 400 x 20 Type 3 595 40 470 73 5 5 377 18 FT FP 94 16 x 1 400 x 0 Type 3	14	Х	3	350	Х	80	Туре З	535	40	413	127	5	5	326	70	FT	FP	70
14 x 8 350 x 200 Type 3 535 40 413 270 5 5 326 196 FT FP 62 14 x 10 350 x 250 Type 3 535 40 413 324 55 326 250 FT FP 55 14 x 12 350 x 300 Type 3 595 40 413 381 55 55 377 15 FT FP 94 16 x 14 00 x 20 Type 3 595 40 470 43 5 377 15 FT FP 94 16 x 14 400 x 40 Type 3 595 40 470 72 5 577 43 FT FP 94 16 x 14 400 x 50 Typ 3 595	14	Х	4	350	Х	100	Туре З	535	40	413	157	5	5	326	93	FT	FP	70
14 x 10 350 x 250 Type 3 535 40 413 324 5 5 326 250 FT FP 556 14 x 12 350 x 300 Type 1 535 40 413 381 5 5 326 301 FT FP 52 16 x ½ 400 x 15 Type 3 595 40 470 43 5 5 377 15 FT FP 94 16 x 14 400 x 250 Type 3 595 40 470 43 5 5 377 18 FT FP 94 16 x 14 400 x 400 Type 3 595 40 470 73 5 5 377 13 FT FP 94 16 x 14 400 x 80 Type 3 595 40 470 127 5 5 377 10 <	14	Х	6	350	Х	150	Туре З	535	40	413	216	5	5	326	145	FT	FP	67
14x12350x300Type15354041338155326301FTFP5216x $\frac{1}{2}$ 400x15Type3595404703555537715FTFP9416x $\frac{1}{4}$ 400x20Type3595404704355537715FTFP9416x1400x25Type35954047051537718FTFP9416x1/2400x5057ype359540470735537713FTFP9416x2400x505404707355537732FTFP9416x3400x505404701275537713FTFP9416x3400x100Type3595404701275537770FTFP9316x4400x100Type35954047012755377135FTFP9316x4400x100Type3595404702165377145FTFP <td>14</td> <td>Х</td> <td>8</td> <td>350</td> <td>Х</td> <td>200</td> <td>Туре З</td> <td>535</td> <td>40</td> <td>413</td> <td>270</td> <td></td> <td>5</td> <td>326</td> <td>196</td> <td>FT</td> <td>FP</td> <td>62</td>	14	Х	8	350	Х	200	Туре З	535	40	413	270		5	326	196	FT	FP	62
16 x ½ 400 x 15 Type 3 595 40 470 355 5 377 15 FT FP 94 16 x ¾ 400 x 20 Type 3 595 40 470 433 5 53 377 15 FT FP 94 16 x 1 400 x 25 Type 3 595 40 470 51 5 577 15 FT FP 94 16 x 1½ 400 x 40 Type 3 595 40 470 92 5 5377 32 FT FP 94 16 x 3 400 x 80 Type 3 595 40 470 127 5 5377 13 FT FP 94 16 x 4 400 x 100 Type 3 595 40 <	14	Х	10	350	Х	250	Туре З	535	40	413	324	5	5	326	250	FT	FP	56
16 x ¾ 400 x 20 Type 3 595 40 470 43 5 5 377 15 FT FP 94 16 x 1 400 x 25 Type 3 595 40 470 51 5 577 18 FT FP 94 16 x 1½ 400 x 40 Type 3 595 40 470 73 5 5 377 18 FT FP 94 16 x 2 400 x 50 Type 3 595 40 470 92 5 5 377 43 FT FP 94 16 x 3 400 x 80 Type 3 595 40 470 157 5 5 377 93 FT FP 92 16 x 4 400 x 100 Type 3 595 40 470 216 5 577 145 FT FP 94 <td>14</td> <td>Х</td> <td>12</td> <td>350</td> <td>Х</td> <td>300</td> <td>Type 1</td> <td>535</td> <td>40</td> <td>413</td> <td>381</td> <td>5</td> <td>5</td> <td>326</td> <td>301</td> <td>FT</td> <td>FP</td> <td>52</td>	14	Х	12	350	Х	300	Type 1	535	40	413	381	5	5	326	301	FT	FP	52
16x1400x25Type 35954047051155537718FTFP9416x1½400x40Type 35954047073555737732FTFP9416x2400x500Type 35954047092555337743FTFP9416x3400x800Type 35954047092555337770FTFP9316x4400x100Type 359540470157555337793FTFP9316x4400x150Type 359540470157555337793FTFP9316x6400x150Type 35954047021655377145FTFP9816x8400x250Type 359540470324553377145FTFP8916x10400x250Type 359540470324553377101FTFP7816x12400x300Type 3595404703	16	Х	1/2	400	Х	15	Туре З	595	40	470	35	5	5	377	15	FT	FP	94
16 x 1½ 400 x 40 Type 3 595 40 470 73 55 577 32 FT FP 94 16 x 2 400 x 50 Type 3 595 40 470 92 55 577 43 FT FP 94 16 x 3 400 x 80 Type 3 595 40 470 127 55 577 70 FT FP 93 16 x 4 400 x 100 Type 3 595 40 470 157 55 577 93 FT FP 92 16 x 6 400 x 150 Type 3 595 40 470 216 55 577 145 FT FP 98 16 x 10 400 x 200 Type 3 595 40 470 324 55 577 130 FT FP 78 16 x	16	Х	¾	400	Х	20	Туре З	595	40	470	43	5	5	377	15	FT	FP	94
16 x 2 400 x 50 Type 3 595 40 470 92 5 57 43 FT FP 94 16 x 3 400 x 80 Type 3 595 40 470 127 55 55 377 70 FT FP 93 16 x 4 400 x 100 Type 3 595 40 470 157 55 55 377 93 FT FP 93 16 x 6 400 x 150 Type 3 595 40 470 216 55 577 145 FT FP 89 16 x 8 400 x 200 Type 3 595 40 470 324 55 577 145 FT FP 89 16 x 12 400 x 300 Type 3 595 40 470 381 55 577 301 FT FP 78 <tr< td=""><td>16</td><td>Х</td><td>1</td><td>400</td><td>Х</td><td>25</td><td>Туре З</td><td>595</td><td>40</td><td>470</td><td>51</td><td>5</td><td>5</td><td>377</td><td>18</td><td>FT</td><td>FP</td><td>94</td></tr<>	16	Х	1	400	Х	25	Туре З	595	40	470	51	5	5	377	18	FT	FP	94
16 x 3 400 x 80 Type 3 595 40 470 127 55 577 70 FT FP 93 16 x 4 400 x 100 Type 3 595 40 470 157 5 577 93 FT FP 92 16 x 6 400 x 150 Type 3 595 40 470 216 5 577 145 FT FP 93 16 x 8 400 x 200 Type 3 595 40 470 220 55 577 145 FT FP 84 16 x 10 400 x 250 Type 3 595 40 470 324 55 577 301 FT FP 78 16 x 12 400 x 300 Type 3 595 40 470 381 5 577 301 FT FP 71 16 x </td <td>16</td> <td>Х</td> <td>1½</td> <td>400</td> <td>Х</td> <td>40</td> <td>Туре З</td> <td>595</td> <td>40</td> <td>470</td> <td>73</td> <td>5</td> <td>5</td> <td>377</td> <td>32</td> <td>FT</td> <td>FP</td> <td>94</td>	16	Х	1½	400	Х	40	Туре З	595	40	470	73	5	5	377	32	FT	FP	94
16 x 4 400 x 100 Type 3 595 40 470 157 5 5 377 93 FT FP 92 16 x 6 400 x 150 Type 3 595 40 470 216 5 55 377 145 FT FP 88 16 x 8 400 x 200 Type 3 595 40 470 270 55 57 196 FT FP 88 16 x 10 400 x 250 Type 3 595 40 470 324 55 57 377 196 FT FP 88 16 x 12 400 x 300 Type 3 595 40 470 381 5 57 377 301 FT FP 78 16 x 14 400 x 350 Type 3 595 40 470 381 5 57 377 326 FT </td <td>16</td> <td>х</td> <td>2</td> <td>400</td> <td>Х</td> <td>50</td> <td>Туре З</td> <td>595</td> <td>40</td> <td>470</td> <td>92</td> <td>5</td> <td>5</td> <td>377</td> <td>43</td> <td>FT</td> <td>FP</td> <td>94</td>	16	х	2	400	Х	50	Туре З	595	40	470	92	5	5	377	43	FT	FP	94
16 x 6 400 x 150 Type 3 595 40 470 216 5 577 145 FT FP 89 16 x 8 400 x 200 Type 3 595 40 470 270 55 577 196 FT FP 84 16 x 10 400 x 250 Type 3 595 40 470 324 55 577 250 FT FP 78 16 x 12 400 x 300 Type 3 595 40 470 381 55 577 301 FT FP 78 16 x 14 400 x 350 Type 3 595 40 470 413 55 377 301 FT FP 64 18 x 14 400 x 350 Type 3 635 40 533 43 55 425 15 FT FP 112 18 x <td< td=""><td>16</td><td>х</td><td>З</td><td>400</td><td>Х</td><td>80</td><td>Туре З</td><td>595</td><td>40</td><td>470</td><td>127</td><td>5</td><td>5</td><td>377</td><td>70</td><td>FT</td><td>FP</td><td>93</td></td<>	16	х	З	400	Х	80	Туре З	595	40	470	127	5	5	377	70	FT	FP	93
16 x 8 400 x 200 Type 3 595 40 470 270 5 5 377 196 FT FP 84 16 x 10 400 x 250 Type 3 595 40 470 324 5 5 377 250 FT FP 78 16 x 12 400 x 300 Type 3 595 40 470 381 5 5 377 301 FT FP 78 16 x 14 400 x 350 Type 3 595 40 470 381 5 5 377 301 FT FP 71 16 x 14 400 x 350 Type 3 595 40 470 413 5 5 377 326 FT FP 64 18 x ½ 450 x 15 Type 3 635 40 533 51 5 425 15 FT	16	х	4	400	х	100	Туре З	595	40	470	157	5	5	377	93	FT	FP	92
16 x 10 400 x 250 Type 3 595 40 470 324 5 5 377 250 FT FP 78 16 x 12 400 x 300 Type 3 595 40 470 381 5 5 377 301 FT FP 71 16 x 14 400 x 350 Type 2 595 40 470 413 5 5 377 301 FT FP 71 16 x 14 400 x 350 Type 3 635 40 470 413 5 5 377 326 FT FP 64 18 x ½ 450 x 15 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 25 Type 3 635 40 533 73 5 5 425 18	16	х	6	400	х	150	Туре З	595	40	470	216	5	5	377	145	FT	FP	89
16 x 12 400 x 300 Type 3 595 40 470 381 5 5 377 301 FT FP 71 16 x 14 400 x 350 Type 2 595 40 470 413 5 5 377 326 FT FP 64 18 x ½ 450 x 15 Type 3 635 40 533 35 5 425 15 FT FP 64 18 x ¾ 450 x 15 Type 3 635 40 533 35 5 425 15 FT FP 112 18 x 1 450 x 25 Type 3 635 40 533 73 5 5 425 18 FT FP 112 18 x 1½ 450 x 25 Type 3 635 40 533 73 5 5 425 32 FT FP <td< td=""><td>16</td><td>х</td><td>8</td><td>400</td><td>х</td><td>200</td><td>Туре З</td><td>595</td><td>40</td><td>470</td><td>270</td><td>5</td><td>5</td><td>377</td><td>196</td><td>FT</td><td>FP</td><td>84</td></td<>	16	х	8	400	х	200	Туре З	595	40	470	270	5	5	377	196	FT	FP	84
16 x 14 400 x 350 Type 2 595 40 470 413 5 5 377 326 FT FP 64 18 x ½ 450 x 15 Type 3 635 40 533 35 5 425 15 FT FP 112 18 x ¾ 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x ¼ 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 25 Type 3 635 40 533 73 5 5 425 18 FT FP 112 18 x ½ 450 x 40 Type 3 635 40 533 92 5 5 425 32 FT FP<	16	х	10	400	х	250	Туре З	595	40	470	324	5	5	377	250	FT	FP	78
18 x ½ 450 x 15 Type 3 635 40 533 35 5 425 15 FT FP 112 18 x ¾ 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 25 Type 3 635 40 533 51 5 425 18 FT FP 112 18 x 1½ 450 x 40 Type 3 635 40 533 73 5 5 425 32 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 127 5 5 425 43 FT FP 111	16	х	12	400	х	300	Туре З	595	40	470	381	5	5	377	301	FT	FP	71
18 x ½ 450 x 15 Type 3 635 40 533 35 5 425 15 FT FP 112 18 x ¾ 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 25 Type 3 635 40 533 51 5 425 18 FT FP 112 18 x 1½ 450 x 40 Type 3 635 40 533 73 5 5 425 32 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 127 5 5 425 43 FT FP 111	16	х	14	400	х	350	Type 2	595	40	470	413	5	5	377	326	FT	FP	64
18 x ¾ 450 x 20 Type 3 635 40 533 43 5 5 425 15 FT FP 112 18 x 1 450 x 25 Type 3 635 40 533 51 5 425 18 FT FP 112 18 x 1½ 450 x 40 Type 3 635 40 533 51 5 425 18 FT FP 112 18 x 1½ 450 x 40 Type 3 635 40 533 73 5 5 425 32 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 92 5 5 425 43 FT FP 111 18 x 3 450 x 80 Type 3 635 40 533 127 5 5 425 70 FT FP 11	18	х	1/2	450	х	15		635	40	533	35	5	5	425	15	FT	FP	112
18 x 1 450 x 25 Type 3 635 40 533 51 5 425 18 FT FP 112 18 x 1½ 450 x 40 Type 3 635 40 533 73 55 425 18 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 73 55 425 32 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 92 55 425 43 FT FP 111 18 x 3 450 x 50 Type 3 635 40 533 92 55 425 43 FT FP 111 18 x 3 450 x 80 Type 3 635 40 533 127 55 425 70 FT FP 110	18	х	3∕4	450	х	20		635	40	533	43	5	5	425	15	FT	FP	112
18 x 1½ 450 x 40 Type 3 635 40 533 73 5 5 425 32 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 92 5 5 425 43 FT FP 111 18 x 2 450 x 50 Type 3 635 40 533 92 5 5 425 43 FT FP 111 18 x 3 450 x 80 Type 3 635 40 533 127 5 5 425 70 FT FP 110		х	1		х				40	533	51			425	18	FT	FP	
18 x 2 450 x 50 Type 3 635 40 533 92 5 5 425 43 FT FP 111 18 x 3 450 x 80 Type 3 635 40 533 127 5 5 425 43 FT FP 111									40									
18 x 3 450 x 80 Type 3 635 40 533 127 5 5 425 70 FT FP 110																		
																		<u> </u>
	18	x	4	450	X	100	Туре З	635	40	533	157	5	5	425	93	FT		109

Re	Reducing Flange Taper Bore																
		0									Minimum				Code CP	Steelwork Cast Ste	
									Large NB	Small NB	Heavy Duty	Minimum HiPerFlon			СТ	Cast Ste	
							Clange	Face to	Raised	Raised	PFA Liner Thickness ¹	PTFE Liner	Large	Small	FP	Fabricated Ste	
Nom	inal Bo						Flange Ø A	Face B	Face Ø C	Face Ø D	THICKNESS	Thickness ¹ T	Bore ² Ø E	Bore ² Ø F		Fabricated Ste	
Inche			mm			Flange Type	mm	mm	mm	mm	mm	mm	mm	mm	Standard	To Order	Weight kg
18	x	6	450	х	150	Type 3	635	40	533	216	5	5	425	145	FT	FP	106
18	X	8	450	x	200	Type 3	635	40	533	270	5	5	425	196	FT	FP	101
18	x	10	450	x	250	Type 3	635	40	533	324	5	5	425	250	FT	FP	95
18	х	12	450	х	300	Type 3	635	40	533	381	5	5	425	301	FT	FP	87
18	х	14	450	х	350	Type 2	635	40	533	413	5	5	425	326	FT	FP	81
18	х	16	450	х	400	Type 1	635	40	533	470	5	5	425	377	FT	FP	103
20	х	1/2	500	х	15	Туре З	700	53	584	35	5	5	473	15	FT	FP	153
20	х	3⁄4	500	х	20	Туре З	700	53	584	43	5	5	473	15	FT	FP	153
20	х	1	500	х	25	Туре З	700	53	584	51	5	5	473	18	FT	FP	153
20	х	1½	500	х	40	Туре З	700	53	584	73	5	5	473	32	FT	FP	153
20	х	2	500	х	50	Туре З	700	53	584	92	5	5	473	43	FT	FP	153
20	х	3	500	х	80	Туре З	700	53	584	127	5	5	473	70	FT	FP	152
20	х	4	500	х	100	Туре З	700	53	584	157	5	5	473	93	FT	FP	151
20	х	6	500	х	150	Туре З	700	53	584	216	5	5	473	145	FT	FP	147
20	х	8	500	х	200	Туре З	700	53	584	270	5	5	473	196	FT	FP	142
20	х	10	500	х	250	Туре З	700	53	584	324	5	5	473	250	FT	FP	134
20	х	12	500	х	300	Туре З	700	53	584	381	5	5	473	301	FT	FP	126
20	х	14	500	х	350	Туре З	700	53	584	413	5	5	473	326	FT	FP	118
20	х	16	500	х	400	Type 2	700	53	584	470	5	5	473	377	FT	FP	143
20	х	18	500	х	450	Type 1	700	53	584	533	5	5	473	425	FT	FP	141
24	х	1/2	600	х	15	Туре З	815	57	692	35	5	5	571	15	FT	FP	229
24	Х	3∕4	600	х	20	Туре З	815	57	692	43	5	5	571	15	FT	FP	229
24	Х	1	600	х	25	Туре З	815	57	692	51	5	5	571	18	FT	FP	229
24	Х	1½	600	х	40	Туре З	815	57	692	73	5	5	571	32	FT	FP	228
24	Х	2	600	Х	50	Туре З	815	57	692	92	5	5	571	43	FT	FP	228
24	Х	3	600	Х	80	Туре З	815	57	692	127	5	5	571	70	FT	FP	227
24	х	4	600	х	100	Туре З	815	57	692	157	5	5	571	93		FP	226
24	х	6	600	х	150	Туре З	815	57	692	216	5	5	571	145		FP	222
24	х	8	600	х	200	Туре З	815	57	692	270	5	5	571	196	FT	FP	216
24	х	10	600	х	250	Туре З	815	57	692	324	ļ ļ	5	571	250		FP	208
24	х	12	600	х	300	Туре З	815	57	692	381	5	5	571	301		FP	198
24	Х	14	600	х	350	Туре З	815	57	692	413	5	5	571	326	FT	FP	190
24	Х		600	х	400	Туре З	815	57	692	470	5	5	571	377	FT	FP	218
24	х		600	х	450	Туре З	815	57	692	533	5	5	571	425		FP	215
24	Х	20	600	х	500	Type 2	815	57	692	584	5	5	571	473	FT	FP	212

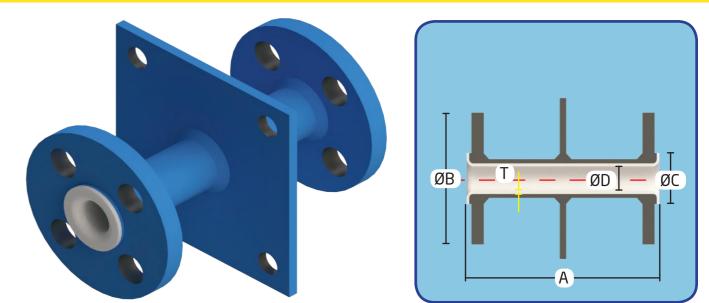

1 - Please note liner thicknesses are based on Virgin PFA or PTFE, for other materials consult the liner tables in the manual. 2 - Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty liner. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manu



Blank Flange

crp

Puddle Flange Pipe Spool



blank forged flange, the blank flange has such as sampling or at junctions which

The blank flange is an end of pipe line a disc of PTFE bonded to the raised face. in the future may lead to other piping component. Usually manufactured from a They may be employed in sub-systems systems.

Blank F	lange				Constructi	on Codes
		Face to Face	Raised Face	HiPerFlon PTFE Liner Thickness		Steelwork Lining Cast Steel PFA Cast Steel PTFE abricated Steel PFA abricated Steel PTFE
Nominal	Bore	А	ØВ	Т	Construction	Weight
Inches	mm	mm	mm	mm	Standard	kg
1/2	15	14	35	4	FT	0.5
3∕4	20	15	43	4	FT	0.7
1	25	17	51	4	FT	1.0
1½	40	19	73	4	FT	1.6
2	50	22	92	4	FT	2.5
3	80	26	127	4	FT	5
4	100	26	157	4	FT	7
6	150	28	216	4	FT	12
8	200	31	270	4	FT	20
10	250	33	324	4	FT	29
12	300	34	381	4	FT	44
14	350	37	413	4	FT	60
16	400	39	470	4	FT	77
18	450	42	533	4	FT	96
20	500	43	584	4	FT	126
24	600	48	692	4	FT	191

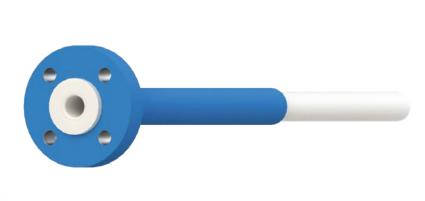
CRP offer a range of puddle flange spools, typically comprising of a standard pipe spool (with all of the usual spool flange options) with one additional "puddle flange" located along its length (typically in the middle). The spools are usually used in circumstances where a spool has to penetrate through a wall, a bund or similar. A hole in the wall has to be made that is sufficiently large to allow the flange on the end of the spool to pass through it, and then the additional puddle

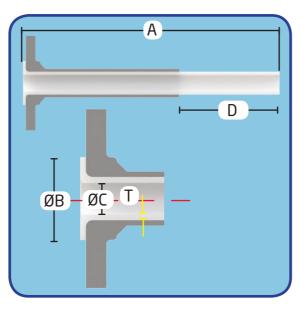
flange is used to close up the hole, and so the puddle flange is typically somewhat larger in size than the flanges on the ends of the spool.

Puddle flanges can be circular, square or other shapes to suit particular customer requirements, and supplied with or without bolt holes. The thickness of these flanges is driven by their purpose. If they are simply to close over a hole to prevent the passage of air, then they can be quite thin. However, if they are also used as

Puddle Flange Spool												
			Length			HiPerFlon PTFE Liner	Lined					
				Flange	Raised	Thickness	Bore					
		Minimum	Maximum	Outside	Face	Nominal ¹	Nominal ²					
Nomina	Bore		А	ØВ	ØC	Т	ØD					
Inches	mm	mm	mm	mm	mm	mm	mm					
1/2	15	155	6000	90	35	2.3	16					
3⁄4	20	170	6000	100	43	2.3	16					
1	25	191	6000	110	51	3.2	20					
1½	40	215	6000	125	73	3.2	34					
2	50	243	6000	150	92	3.2	46					
З	80	279	6000	190	127	3.2	70					
4	100	307	6000	230	157	4.5	93					
6	150	345	6000	280	216	5.5	143					
8	200	385	3000	345	270	8.5	188					
10	250	429	3000	405	324	9.1	247					
12	300	473	3000	485	381	10.4	286					
14	350	511	3000	535	413	8.3	319					

- Liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual. 2 - Because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated volume


part of the pipework support, or have to take some other structural load, then they can be supplied with a greater thickness to suit. As an option, puddle flange spools can be supplied with a split flange on one end. The advantage of this is that since the split flange can be removed while the spool is being fitted through the wall, and the flange then refitted, the hole in the wall only needs to be large enough to pass the spool stub end through, and the puddle flange can also be smaller.


33

Drain Leg

Jacketed Pipe Spools & Fittings

with an open end. The PTFE liner can and can be cut on site to suit. Longer to the drain cover. be cut flush with the end, or protrude an protrusions can be specified. These are amount to be specified by the customer. typically used for running product into

A drain leg is a single flanged pipe spool As standard the protrusion is 100mm, surface drains, the steel pipe being run up

Drain Leg											
	Len	gth	-	HiPerFlon PTFE	Lined						
	Minimum	Maximum	Raised Face	Liner Thickness ¹	Bore Nominal ²	Protruding Length	Cut off				
Bore		А	ØВ	Т	ØC	D	Angle³				
mm	mm	mm	mm	mm	mm	mm	0				
15	90	6000	35	2.3	16	100	90				
20	90	6000	43	2.3	16	100	90				
25	90	6000	51	3.2	20	100	90				
40	95	6000	73	3.2	34	100	90				
50	110	6000	92	3.2	46	100	90				
80	120	6000	127	3.2	70	100	90				
100	125	6000	157	4.5	93	100	90				
150	140	6000	216	5.5	143	100	90				
200	150	3000	270	8.5	188	100	90				
250	165	3000	324	9.1	247	100	90				
300	170	3000	381	10.4	286	100	90				
350	190	3000	413	8.3	319	100	90				
	Bore mm 15 20 25 40 50 80 100 150 200 250 300	Image Minimum Bore mm 15 90 20 90 25 90 40 95 50 110 80 120 100 125 150 140 200 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 165 300	Length Minimum Maximum Bore - A mm mm mm 15 90 6000 20 90 6000 25 90 6000 40 95 6000 50 110 6000 80 120 6000 100 125 6000 150 140 6000 250 165 3000 300 170 3000	Length Raised Minimum Maximum Raised Bore Minimum Maximum Face Bore Minimum Maximum Face Bore Minimum Maximum Face Bore Minimum Maximum Face Bore Minimum Mm Mm 15 90 6000 35 20 90 6000 43 25 90 6000 51 40 95 6000 73 50 110 6000 92 80 120 6000 127 100 125 6000 157 150 140 6000 216 200 150 3000 270 250 165 3000 324 300 170 3000 381	Length HiPerFlon Minimum Maximum Raised Liner Bore Minimum Maximum Face Thickness1 Bore Minimum Maximum Face Thickness1 mm mm mm mm mm 15 90 6000 35 2.3 20 90 6000 43 2.3 25 90 6000 51 3.2 40 95 6000 73 3.2 50 110 6000 127 3.2 80 120 6000 157 4.5 150 140 6000 216 5.5 200 150 3000 270 8.5 250 165 3000 324 9.1 300 170 3000 381 10.4	Length HiPerFlon Lined Minimum Maximum Raised HiPerFlon Lined Bore Minimum Maximum Face Thickness1 Nominal2 Bore T Ø B T Ø C mm mm mm mm mm 15 90 6000 35 2.3 16 20 90 6000 43 2.3 16 20 90 6000 51 3.2 20 40 95 6000 73 3.2 34 50 110 6000 92 3.2 46 80 120 6000 127 3.2 70 100 125 6000 157 4.5 93 150 140 6000 216 5.5 143 200 150 3000 270 8.5 188 250 165 3000 381 10.	Length HiPerFlon Protruding Minimum Maximum Raised Face Nominal ² Protruding Bore Minimum Maximum Face Thickness ¹ Ø C D mm mm Mm Mm Mm Mm Mm 15 90 6000 35 2.3 166 100 20 90 6000 43 2.3 166 100 25 90 6000 73 3.22 20 100 40 95 6000 73 3.22 34 100 50 110 6000 92 3.2 46 100 50 110 6000 127 3.2 70 100 100 125 6000 127 3.2 100 100 100 125 6000 127 3.2 100 100 100 125 6000 127 3.2				

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual.

2 - Because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated

3 - Angle measured from centre line of protruding liner spool.

It is possible to provide a source of heating or cooling to a lined piping system by using jackets around the equipment. Here the core pipe is completely surrounded by a jacket pipe. The process material travels through the lined pipe as normal, whilst the heating or cooling medium travels through the outer jacket.

lackets typically contain steam, hot water or oil. These can be operated at temperatures of up to the maximum operating temperature of the lining - 200°C or the required process temperature if lower. Jackets can also work successfully

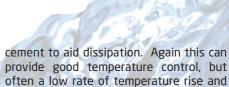
Steam Tracing

Direct steam tracing can be used by running a steam pipe alongside the steel tube or fitting outside the liner, securing

Fluid Tracing

As with steam tracing this can be used, more often for closer temperature control or for cooling control.

Electrical Tracing


Electrical tracing can be undertaken with heating tapes or cables, often used in conjunction with a heat conducting

at cryogenic temperatures, as long as the steelwork is specified appropriately.

On a straight pipe spool the jacket usually extends almost to the end of the pipe, leaving some room to introduce the necessary vent between the steel tube and the liner. If the line is to be subsequently insulated such vents require extensions to take them outside the lagging. Connections to the jacket can be flanged, threaded or whatever the customer specification requires.

Fittings and Valves can also be jacketed,

it with steel strapping and insulating the line. It is important to limit the temperature to avoid damaging the liner and avoid creating localised hot spots

but it may be that their short length allows the process to remain heated, simply by insulating them.

The advantages of jacketing are that heat can be applied evenly to the pipe without the danger of localised hot spots, which can lead to localised liner damage or liner expansion, both of which can lead to liner collapse. Also jacketing allows for a smooth ramp up of temperatures - a useful attribute given the poor heat conducting characteristics of PTFE and PFA.

where the trace is in contact with the pipe.

cement to aid dissipation. Again this can of course is a risk in certain ATEX zones.

ØD — ØC

Field Flare Pipe Spools

Field flaring is a method by which finished pipe spools can be manufactured to length on site. In most cases this method is used for producing emergency spools in the case of a plant breakdown or for the convenience of small scale maintenance. It may also be used to produce the final closing spools for project work. Occasionally sites use it as a preferred

Sliding Fit Liner System

The sliding fit liner system is manufactured specially for field flare use and cannot use standard factory spools. Standard factory spools have liners fitted which are an interference fit with the steelwork - this provides support under vacuum conditions. The sliding fit liner is exactly the same as our factory finished spool liner. However the lined pipe spools go through a special size setting heat treatment cycle, prior to being dispatched. This makes the liner smaller in diameter, allowing them to be

method for producing all of their spools, usually for historic reasons or a geographic need to be very self-sufficient.

Before choosing to adopt field flaring as a site practice it is important to be aware of the downside of this. First, it is likely that the field manufactured spools are more expensive than factory finished spools. This is because the site work can never be as efficient as factory production and

removed on site to allow the steelwork to be fabricated and the liner reinserted. This system makes it easier to fabricate spools on site using welded, threaded or Van Stone flanging. Once reinserted the PTFE liner has a tremendous memory and will recover in the presence of heat back to its original diameter to provide vacuum resistance. The key disadvantage of this liner type is that in warm or hot climates - even the UK - the liners will recover over time and become difficult or impossible to

Tight Fit Liner System

A tight fit liner system is manufactured specially for field flare use, because of the need to have vent holes in any spool that is produced as a result of field flaring. It is not possible to drill vent holes on site because of the potential damage to the liner. A spool type is available with vent holes drilled regularly along the length of the pipe to guarantee that any spool made from it has at least one vent hole; our specification ES1067. However, it is possible to use a standard factory finished spool to make a shorter tight fit field flare

spool by cutting it up, but it is essential to ensure that there is at least one vent hole in the spool piece to be used.

This method does require some machinery for cutting and threading the pipe and there is a process risk of damaging the liner during the "parting off" activity.

A key advantage of tight fit liner spools are that they work in all climatic conditions and will provide the same vacuum performance as a factory made spool. The disadvantages are that threaded flanges only can be used in the field, as it is not possible to weld onto the spool with liner

Sliding Fit Liner	Tig	ght Fit Liner
× Not suitable for hot climate	✓	Can use in any climate
× Will recover after time depending on temperature	~	Can be held on stock indefinitely
✓ Will provide same vacuum performance as factory made spool	~	Will provide same vacuum performance as factory made spool
✓ Vent holes can be drilled on-site	×	Need to ensure vent holes
✓ Can fit welded accessories	×	Cannot fit studs, vent bosses etc.
✓ Can use Van Stone, Welded or Threaded Flange	×	Can only use special threaded flanges
✓ Can have fixed or rotating flange	×	Cannot have rotating flange easily
✓ Only requires a saw	×	Requires parting off and threading machinery

A closing pipe spool is not actually a different product, however, it is a key part of an approach to designing and installing lined piping systems with a view to the best construction methodology, yet managing the potential tolerance build up issues and simple design and installation errors that are inevitable with large complex construction projects. When one has tolerance errors causing piping elements not to fit, it is possible and acceptable to use spacers to complete gaps that present themselves. However, this does not allow one to eliminate materials if a spool or other fitting is too long and of course it

introduces additional joints which are not desirable. The alternative approach is to specify closing or make-up pipe spools. Here, one identifies a relatively short length pipe spool on each horizontal or vertical run between elements that need to be fixed in space.

ØB

This spool is identified on isometric drawings or drawing take-offs as a closing spool and is still given its nominal length on the isometric or take-off. However, CRP will not manufacture these particular spools at the time of general supply. When the plant is assembled up to this point, a specific measurement is taken of the actual gap and CRP will then produce the spool required to final length and give it the relevant tag or other identifiers nominated at the time of original order.

Closing spools jump any other production queues and can usually be manufactured in a 24-48 hour period. It helps reduce manufacturing lead times to specifiy these as Van Stone spools, to keep them short and of smaller nominal bores. If time is really an issue, then they can be supplied unpainted. Other spool styles can be manufactured as closing spools.

Van St	one Cl	osing Pipe	e Spool				UltraHiPerFlon*			
			Length				Superweight/			Weight
				Clange		HiPerFlon PTFE	Heavy Duty UHP PTFE	Lined		
		Minimum	Maximum	Flange Outside Diameter	Raised Face	Liner Thickness Nominal ¹	Liner Thickness Nominal ¹	Lined Bore Nominal ²	Flange	Per
Nomina	l Bore		А	ØВ	ØC	Т	Т	ØD	Pack	metre
Inches	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg
1/2	15	250	6000	90	35	2.3	2.3	16	1.0	2.0
3⁄4	20	250	6000	100	43	2.3	2.3	16	1.3	2.0
1	25	250	6000	110	51	3.2	4.5	20	3.0	2.8
1½	40	250	6000	125	73	3.2	4.5	34	4.0	5.0
2	50	250	6000	150	92	3.2	4.5	46	6.0	6.5
З	80	250	6000	190	127	3.2	4.8	70	10	12.3
4	100	250	6000	230	157	4.5	5.0	93	12	16.0
6	150	500	6000	280	216	5.5	6.0	143	22	32.0
8	200	500	3000	345	270	8.5	8.5	188	27	54.0

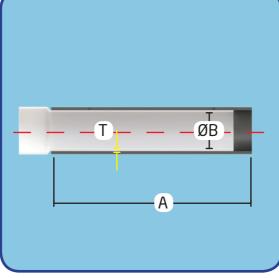
1 - Liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual.

2 - Because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated volume

there is more materials wastage. Secondly, the spools are not produced in a clean controlled factory environment with the level of process control that the factory can provide, nor can the traceability of materials be maintained easily. Finally, the field flare is only as good as the operator and the equipment he is working with. Having said this, it can still be a very useful method to have available. Standard sizes for field flare are 1 in to 4 in.

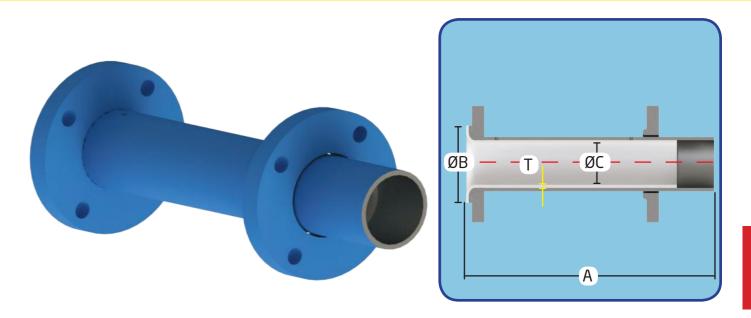
remove from the steel tube.

There are three types of heat set sliding fit liner, varying by their flange configuration. These types are our No Flanges, Van Stone flanging one end and welded stub end with rotating flange one end. We recommend having one end flanged as it makes the production of the field flare quicker and less expensive.


inside. Similarly it is not possible to fit lugs, studs, vent bosses or any sort of mounting bracket in the field. Also it is necessary to have a pipe threading and parting off machine in order to prepare the spool for flanging and flaring. CRP manufactures special "companion flanges" for use with these spools which not only provides the correct radius for flaring across at the flange face, but as importantly avoids the potential for a step between the pipe id and the flange id, which can be a stress raiser for the PTFE and cause premature failure.

Field Flare Pipe Spool Slide Fit **No Flanges**

Field Flare Pipe Spool Slide Fit Van Stone Rotating Flange & Loose Slip On Flange


The spool can be supplied in lengths up to welded, used in conjunction with a welded 3000mm long, the spool can be cut down stub end to provide a rotating flange or as many times as practical and used to the pipe threaded and a threaded and of flanges and stub ends along with the manufacture many shorter lengths, each hubbed flange fitted. Once the steelwork time the pipe spool flanged ends must is finished the liner is introduced back into be fabricated on site. Flanges can be the steelwork and the PTFE cut to the

correct length and flared to produce the finished spool. CRP can supply all types piping to fabricate the spool.

Field Fla	are Spool S	Slide Fit - No	Flanges			
Produce	s R/R, F/R	or F/F				
		Order Length	Maximum Finished Spool	HiPerFlon PTFE Liner Thickness Nominal ¹	Lined Bore Nominal ²	Weight
Nomina	Bore	А	Length	Т	ØВ	per metre
Inches	mm	mm	mm	mm	mm	kg
1	25	3000	2800	3.2	20	2.8
1½	40	3000	2800	3.2	34	5.0
2	50	3000	2800	3.2	46	6.5
3 80		3000	2800	3.2	70	12.3
4	100	3000	2800	4.5	93	16.0

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual

2 - Because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated volume

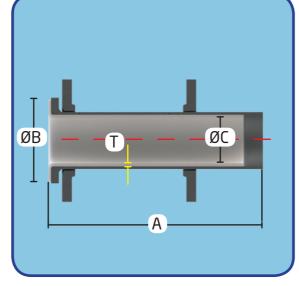
finished Van Stone flanged end complete unfinished end, the steel is sawn to the with rotating flange. The other end is correct length, the flanged welded on supplied unfinished with a tacked on and then the PTFE reintroduced and field slip on weld flange. When ready to be flared completing the pipe spool leaving

This field pipe spool has a fully factory fabricated the PTFE is slid away from the a pipe spool with fixed / rotating flanges

	Field Flare Pipe Spool Slide Fit-Van Stone Rotating Flange and Loose Slip on Flange Produces F/R													
		Order Length	Maximum	Flange Outside	Raised Face	HiPerFlon PTFE Liner Thickness Nominal ¹	Lined Bore Nominal ²		Weight					
	Finished Spool													
Nomina	l Bore	A	Length	ØВ	ØC	Т	ØD	Pack	metre					
Inches	mm	mm	mm	mm	mm	mm	mm	kg	kg					
1	25	2900	2800	110	51	3.2	20	3	2.8					
1½	40	2900	2800	125	73	3.2	34	4	5.0					
2	50	2900	2800	150	92	3.2	46	6	6.5					
3	80	2900	2800	190	127	3.2	70	10	12.3					
4	100	2900	2800	230	157	4.5	93	12	16.0					

1 - Please note liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual. 2 - Bore is based on virgin PTFE heavy duty liner, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the manual.

ready for installation.

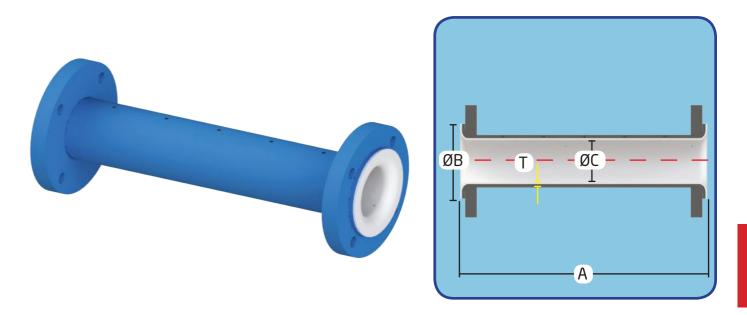

Field Flare Pipe Spool Slide Fit

Welded Rotating Flange & Loose Slip on Flange

Field Flare Pipe Spool Tight Fit Van Stone Rotating Flanges

This field flare pipe spool has a fully factory finished rotating flanged end with welded stub end. The other end is steel is sawn to the correct length, the supplied unfinished with a tacked on slip on weld flange.

slid away from the unfinished end, the with fixed / rotating flanges ready for flanged welded on and then the PTFE reintroduced and field flared completing


When ready to be fabricated the PTFE is the pipe spool leaving a pipe spool installation.

Field Fla Produce	•	ol Slide Fit	- Welded Rota	iting Flang	e and Lo	ose Slip on Fla	ange		
		Order Length	Maximum	Flange Outside	Raised Face	HiPerFlon PTFE Liner Thickness Nominal ¹	Lined Bore Nominal ²		Weight³
			Finished Spool					Flange	
Nomina	l Bore	А	Length	ØВ	ØC	Т	ØD	Pack	Per metre
Inches	mm	mm	mm	mm	mm	mm	mm	kg	kg
1	25	3000	2800	110	51	3.2	20	3	2.8
1½	40	3000	2800	125	73	3.2	34	4	5.0
2	50	3000	2800	150	92	3.2	46	6	6.5
3	80	3000	2800	190	127	3.2	70	10	12.3
4	100	3000	2800	230	157	4.5	93	12	16.0

1 - Please note liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual.

2 - Bore is based on virgin PTFE heavy duty liner, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the manual

3- This does not include the weight of the flanges that will be required for installation

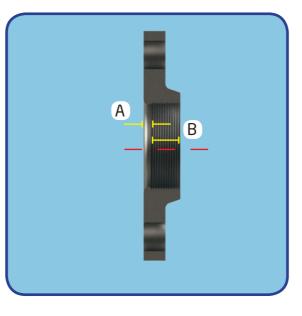
6000mm lengths. It has vent holes drilled tight fit liner, it can only be used by having a threading and parting off machine to expose the liner for flaring and to provide

This spool can be supplied in 3000mm or the thread for a flange. Only threaded some machinery for cutting and threading flanges can be used. This product is the pipe and there is a process risk of at 300mm intervals and can be cut down as ideal for use in hot climates where slide many times as is practical to manufacture fit liners would not be suitable. CRP can many shorter lengths. Because this is a supply special design threaded companion flanges to use with these spools.

Please note that this product does require

	•	e Spool Tight F or use with Fie	it - Van Stone Id Flare Thread	ed Flange											
	Nominal Bore A Length Ø B Ø C T Ø D 3000mm														
Nominal	Bore	A	Length	ØC	T	ØD	3000mm	6000mm							
Inches	mm	mm	mm	mm	mm	mm	mm	kg	kg						
1	25	3000 or 6000	2800 or 5800	110	51	3.2	20	12	20						
1½	40	3000 or 6000	2800 or 5800	125	73	3.2	34	19	34						
2	50	3000 or 6000	2800 or 5800	150	92	3.2	46	26	45						
3 80 3000 or 6000 2800 or 5800 190 127 3.2 70 47 84															
4	4 100 3000 or 6000 2800 or 5800 230 157 4.5 93 60 108														

1 - Please note liner thicknesses are based on Virgin PTFE heavy duty liner for other materials consult the liner tables in the manual. 2 - Bore is based on virgin PTFE heavy duty liner, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the


damaging the liner during the "parting off" activity.

Field Flare Threaded Companion Flange

Field Flare Equipment

Companion flanges are used in conjunction designed for threading onto the spool, with tight fit field flare pipe spools to but with a smooth radiussed transition enable the field fitting of a flange without from the pipe steel bore to the raised welding which could serve to damage face. This is critical to prevent the liner the liner inside the pipe. These flanges becoming stressed when flared over this

are specific to lined pipe, as they are junction. It is important to thread the pipe

sufficiently to run the flange fully home. The table below shows the thread length on the flange and the amount by which to reduce the spool steel length to allow for the flange and lining - assuming flanges on both ends.

Field Fl	Field Flare Threaded Companion Flange									
N			Flange Face to Thread Start	HiPerFlon PTFE Flare	Cut Pipe Length to Finished Spool	Axial Length of Thread				
Nomina	Bore		A	Thickness	Length	В				
Inches	mm	Thread	mm	mm	mm	mm				
1	25	1" BSPP	6.3	3.2	-19	18				
1½	40	1½" BSPP	6.3	3.2	-19	22				
2	50	2" BSPP	6.3	3.2	-19	25				
3	80	3" BSPP	6.3	3.2	-19	32				
4	100	4" BSPP	6.3	4.5	-22	33				
6	150	6" BSPP	6.3	5.5	-24	40				

Heated Tool Expanding Mandrel Flaring

This flaring system can work with either tight fit or sliding fit liners. The system works by first inserting an expanding mandrel into the bore of the liner to be flared. This presses the liner out to the inside of the steel tube and provides a threaded part onto which the tooling can be mounted. The flaring operation is carried out using aluminium flaring heads

Hot Air Hub Pulling Flaring

This method is designed for working with tight fit liners, but with a small amount of additional tooling can work with sliding fit liners. The flaring operation is carried out by heating the PTFE liner directly using a hot air gun and special heating cones designed to provide the heat at the correct places. Once the liner is heated the flaring is undertaken first by using a hand held cone to push out the liner to around 45 degrees. Then a shaped tool is

that have been heated indirectly either using a gas burner or gas torch, electric hot plates, or a gas or electric oven. The flaring heads are supported on the expanding mandrel and are then slowly pressed on to the exposed PTFE allowing the heat from the flaring head to sink into the PTFE and allow it to be flared. The advantage of this type is that it is quite cost-effective in terms of equipment. It is possible to buy individual kits for each

used, pulled into place using a hub puller mounted on the flange. The key difference is that this method requires the PTFE to be pre-heated to its gel temperature, so requires the hot air equipment. The tooling is cold.

This method has the advantage of being significantly quicker than the heated tool method and less subject to operator error. The equipment is more expensive and is only available as a complete set for 1 in to 4in. It is the ideal method for a customer

н	eated Tool Expanding Mandrel Flaring	Н	ot
✓	Lower cost	×	ŀ
 ✓ 	Can be purchased size by size	×	A
×	Relatively Slow	\checkmark	٩
×	Requires careful use of skills	\checkmark	٩
√	Will work with sliding and tight fit liners	\checkmark	V

Training It is critical that operators are properly trained and to this end we can offer

either in house or on-site training for your site. Please email enguiry@crp.co.uk for construction teams. This will ensure the details. piping is produced safely and correctly on

nominal bore of 1in, 1.1/2in, 2in, 3in and 4in. The disadvantage is that it is not particularly quick in use, but is fine for occasional spools.

that wishes to manufacture a significant number of spools efficiently.

CRP recommends this as the method by which the most consistent product can be manufactured, having the most repeatable process.

Air Hub Pulling Flaring

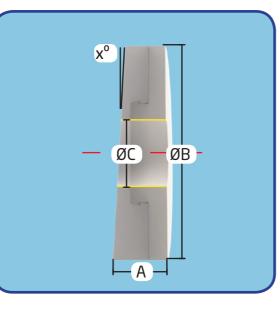
Higher cost

All sizes purchased together

Much faster

More easily trained

Will work with sliding and tight fit liners



Spacer Type 1 Variable Angle

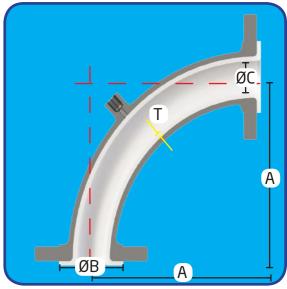
90° Elbow 5D

The variable angle spacer comprises two bore dependent) to compensate for small tool bag as they can assist with awkward interlocking PTFE wedges that can rotate gaps required to deal with a change in from parallel to a maximum 7.5° (nominal piping angle and ideal for the pipe fitters

installations.

Spacer 7	Spacer Type 1 Variable Taper											
		Minimum	Length Maximum	Outside	Bore Nominal		Possible					
Nomina	Bore		A	ØВ	ØC	Weight	Angles					
Inches	mm	mm	mm	mm	mm	kg/mm	0					
1	25	11	25	64	20	0.006	0-7.5					
1½	40	11	25	83	38	0.009	0-7.5					
2	50	11	25	102	51	0.013	0-7.5					
3	80	11	25	133	76	0.020	0-7.5					
4	100	11	25	171	102	0.032	0-4					
6	150	11	25	219	152	0.042	0-3					

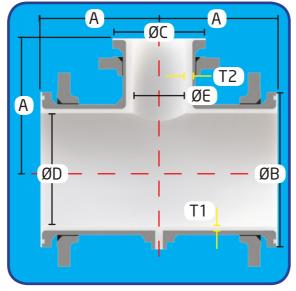
radius than standard elbows. This helps the erosion of the lining if there are any reduce the pressure drop around the bend abrasive materials in the fluid. These are and makes it easier for more viscous fluids such as slurries to pass without product


5D elbows have a significantly larger hold-up. They can also serve to reduce lined in paste extruded PTFE.

90° Elbo	ow 5D						Constru	uction Codes	
				LiDerClan			Code	Steelwork	Lining
		Contro		HiPerFlon	DICCL		CP CT	Cast Steel Cast Steel	PFA PTFE
		Centre Line		PTFE Liner	PTFE Liner		FP	Fabricated Steel	PTFE
			Raised	Thickness	Bore		FT	Fabricated Steel	
	to Fac		Face	Nominal ¹	Nominal ²		<u> </u>		
Nomina	ominal Bore ³ A		ØВ	Т	ØC	Constru	ctior	n Wei	ght
Inches	mm	mm	mm	mm	mm	Star	Idaro	1	kg
1	25	127	51	3.2	20		F٦	F	2.5
1½	40	191	73	3.2	34		F٦	F	4.7
2	50	254	92	3.2	46		F٦	F	7.6
3	80	381	127	3.2	70		F٦	T	15
4	100	508	157	4.5	93		F٦	F	26
6	150	762	216	5.5	143		F٦		63

1 - Liner thicknesses are based on Virgin PTFE heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on Vingin PTFC heavy duty line: 1 of other indexists on table for the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a calibrated volume in the product please consult us.

3 - Larger sizes available on request.



Reducing Tee Rotating Flanges

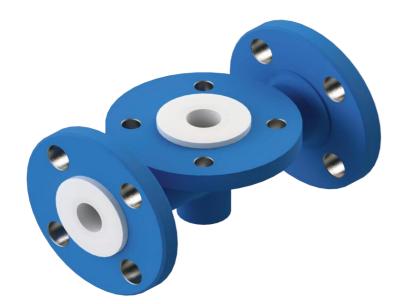
Reducing Tee Rotating Flanges

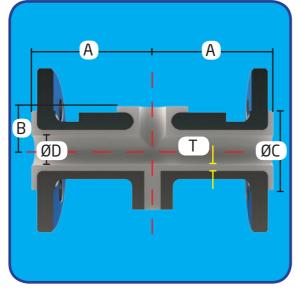
This design of tee has three rotating provides versatility. The tee design is design makes installation easy and requirements.

flanges captured behind stub ends. This ideal as a stock item for maintenance

Re	Reducing Tee Rotating Flanges												Construction Codes	
									Line Heavy Duty	Branch PFA Heavy	Line	Branch	Code Steelw	ork Lining
						Centre Line to Face	Line Raised Face	Branch Raised Face	PFA Liner Thickness Nominal ¹	Duty Liner Thickness Nominal ¹	PFA Liner Bore Nominal ²	PFA Liner Bore Nominal ²	CT Cast FP Fabricated FT Fabricated	
Nom	ninal E	Bore				A	B	ØC	T1	T2	ØD	ØE	Construction	Weight
Inch			mm			mm	mm	mm	mm	mm	mm	mm	Standard	kg
3∕4	х	1/2	20	х	15	75	43	35	4.5	4.5	12	12	FP	2.0
1	х	1/2	25	х	15	89	51	35	4.0	4.5	20	12	FP	2.7
1	х	3∕4	25	х	20	89	51	43	4.0	4.5	20	12	FP	3.0
1½	х	1/2	40	х	15	102	73	35	4.5	4.5	33	12	FP	4.2
1½	х	3∕4	40	х	20	102	73	43	4.5	4.5	33	12	FP	4.5
1½	х	1	40	х	25	102	73	51	4.5	4.0	33	20	FP	4.8
2	х	1/2	50	х	15	114	92	35	4.8	4.5	44	12	FP	6.4
2	х	3∕4	50	х	20	114	92	43	4.8	4.5	44	12	FP	6.6
2	х	1	50	х	25	114	92	51	4.8	4.0	44	20	FP	6.9
2	х	1½	50	х	40	114	92	73	4.8	4.5	44	33	FP	7.7
З	х	1/2	80	х	15	140	127	35	6.5	4.5	66	12	FP	12
З	Х	3∕4	80	х	20	140	127	43	6.5	4.5	66	12	FP	13
З	х	1	80	х	25	140	127	51	6.0	4.0	66	20	FP	13
З	х	1½	80	х	40	140	127	73	6.5	4.5	66	33	FP	14
З	Х	2	80	х	50	140	127	92	6.5	4.8	66	44	FP	15
4	Х	1⁄2	100	х	15	165	157	35	9.0	4.5	86	12	FP	18
4	х	3∕4	100	х	20	165	157	43	9.0	4.5	86	12	FP	19
4	х	1	100	х	25	165	157	51	9.0	4.0	86	20	FP	19
4	х	1½	100	х	40	165	157	73	9.0	4.5	86	33	FP	20
4	х	2	100	х	50	165	157	92	9.0	4.8	86	44	FP	21
4	х	З	100	х	80	165	157	127	9.0	4.5	86	66	FP	24
6	х	1/2	150	х	15	203	216	35	11.0	4.8	137	12	FP	31
6	х	3∕4	150	х	20	203	216	43	11.0	6.5	137	12	FP	31

Re	duc	ing ⁻	Tee R	ota	ting	Flanges							Construction	odes	
									Line			1	Code St	eelwork	Lining
									Heavy	Branch			СР	Cast Steel	PFA
						Centre	Line	Branch	Duty PFA Liner	PFA Heavy Duty Liner	Line PFA Liner	Branch PFA Liner	CT FP Fabr	Cast Steel	PTFE PFA
						Line	Raised	Raised	Thickness	Thickness	Bore	Bore		cated Steel	PTFE
						to Face	Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²			
	ninal E	Bore				A	В	ØC	T1	T2	ØD	ØE	Construction	_	eight
Inch			mm			mm	mm	mm	mm	mm	mm	mm	Standard	-	kg
6	Х	1	150	Х	25	203	216	51	11.0	4.0	137	20	FF	_	32
6	Х	1½	150	Х	40	203	216	73	11.0	4.5	137	33	FF		33
6	Х	2	150	Х	50	203	216	92	11.0	4.8	137	44	FF	_	34
6	Х	3	150	Х	80	203	216	127	11.0	6.5	137	66	FF	_	37
6	Х	4	150	Х	100	203	216	157	11.0	9.0	137	86	FF	_	40
8	Х	1	200	Х	25	229	270	51	10.0	4.0	186	20	FF		48
8	Х	1½	200	Х	40	229	270	73	10.0	4.5	186	33	FF	_	49
8	Х	2	200	Х	50	229	270	92	10.0	4.8	186	44	FF		50
8	Х	3	200	Х	80	229	270	127	10.0	6.5	186	66	FF		54
8	Х	4	200	Х	100	229	270	157	10.0	9.0	186	86	FF	·	57
8	Х	6	200	Х	150	229	270	216	10.0	11.0	186	137	FF	,	63
10	Х	1	250	Х	25	279	324	51	10.0	4.0	237	20	FF	,	72
10	Х	1½	250	Х	40	279	324	73	10.0	4.5	237	33	FF		73
10	х	2	250	х	50	279	324	92	10.0	4.8	237	44	FF)	74
10	Х	З	250	Х	80	279	324	127	10.0	6.5	237	66	FF	,	78
10	х	4	250	х	100	279	324	157	10.0	9.0	237	86	FF		82
10	х	6	250	х	150	279	324	216	10.0	11.0	237	137	FF)	88
10	х	8	250	х	200	279	324	270	10.0	10.0	237	186	FF)	96
12	х	1	300	х	25	305	381	51	10.0	4.0	287	20	FF	,	105
12	х	1½	300	х	40	305	381	73	10.0	4.5	287	33	FF	,	106
12	х	2	300	х	50	305	381	92	10.0	4.8	287	44	FF	,	107
12	х	З	300	х	80	305	381	127	10.0	6.5	287	66	FF)	112
12	х	4	300	х	100	305	381	157	10.0	9.0	287	86	FF)	115
12	х	6	300	х	150	305	381	216	10.0	11.0	287	137	FF	,	122
12	х	8	300	х	200	305	381	270	10.0	10.0	287	186	FF	,	130
12	х	10	300	х	250	305	381	324	10.0	10.0	287	237	FF		140
14	х	1	350	х	25	356	413	51	10.5	4.0	317	20	FF	,	143
14	х	1½	350	х	40	356	413	73	10.5	4.5	317	33	FF	,	144
14	х	2	350	х	50	356	413	92	10.5	4.8	317	44	FF	,	146
14	х	3	350	х	80	356	413	127	10.5	6.5	317	66	FF		150
14	х	4	350	х	100	356	413	157	10.5	9.0	317	86	FF	,	154
14	х	6	350	х	150	356	413	216	10.5	11.0	317	137	FF	,	162
14	х	8	350	х	200	356	413	270	10.5	10.0	317	186	FF	_	171
14	х	10	350	х	250	356	413	324	10.5	10.0	317	237	FF	,	182
14	х	12	350	х	300	356	413	381	10.5	10.0	317	287	FF		197
							8 0			17/ 0					


 Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.
 Nominal bores are based on Virgin PFA heavy duty liner and schedule 40 or 30 steel pipe. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.



Short Stack Tee

Equal Lateral Tee

A short stack tee is the equivalent of an and can make up a key part of manifold equal tee, but instead of a branch, a pad flange is mounted directly onto the main is a limiting factor such as around the top of reactors. Also they are often used for a pipeline without the need for a large

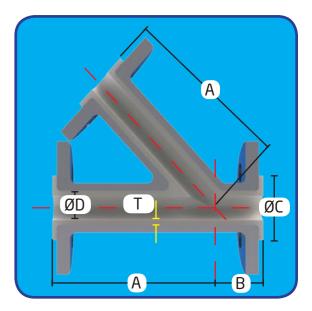
systems when space is at a premium. They are a key part of surface mounted pipeline. This can be very useful if space sampling systems for large line sizes; where a sample can be taken directly from mounting instruments into the main flow flanged or wafer in-line sampling device.

The branch flange holes are supplied threaded UNC and the metric equivalents are available. Short stack tee's can also be manufactured as reducing tee's with the branch size smaller than the main bore.

Short St	tack Tee							Constru	iction Co	des	
					PFA			Code	Stee	lwork	Lining
								CP		ast Steel	PFA
			-		Heavy			СТ		ast Steel	PTFE
		Centre	Centre		Duty Liner	PFA Liner		FP FT		ated Steel ated Steel	PFA PTFE
		Line	Line	Raised	Thickness	Bore			Fabrica	ileu Sleel	PIFE
		to Face	to Face	Face	Nominal ¹	Nominal ²					
Nomina	l Bore	А	В	ØC	Т	ØD	Constru	uctio	n	Wei	ght
Inches	mm	mm	mm	mm	mm	mm	Sta	ndar	d		kg
1	25	89	30	51	4.0	20		C	P		3.1
1½	40	102	37	73	4.5	33		С	P	l	5.1
2	50	114	43	92	4.8	44		С	P	8	8.2
3	80	140	56	127	6.5	66		C	P		17
4	100	165	67	157	9.0	86		С	P		24
6	150	203	105	216	11.0	137		F	P		42

1 - Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.

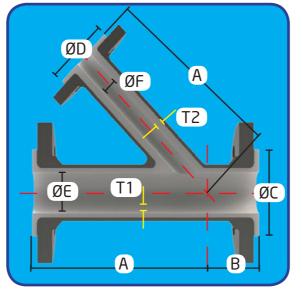
2 - Nominal bores are based on Virgin PFA heavy duty liner and schedule 40 or 30 steel pipe. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.


functionality as an equal tee with the changes in flow direction creating less exception that the branch leaves the main turbulent flow than the 90° branch of an body at 45° close to one end of the main body. They are often used to provide

An equal lateral tee provides the same run-off from reactor outlets and to soften equal tee.

Equal La	teral Tee							Construction	Iodes	
		Centre	Centre		PFA Heavy Duty Liner	PFA Liner		CP CT FP Fabr	cast Steel Cast Steel cast Steel icated Steel	Lining PFA PTFE PFA PTFE
		Line to Face	Line to Face	Raised Face	Thickness Nominal ¹	Bore Nominal ²				
Nomi	nal Bore	А	В	ØC	Т	ØD	Constr	uction	Wei	ght
Inches	mm	mm	mm	mm	mm	mm	Sta	andard		kg
1	25	146	44	51	4.0	20		FP		3.5
1½	40	178	51	73	4.5	33		FP		6.0
2	50	203	64	92	4.8	44		FP		9.6
3	80	254	76	127	6.5	66		FP		20
4	100	305	76	157	9.0	86		FP		31
6	150	368	89	216	11.0	137		FP		53
8	200	444	114	270	10.0	186		FP		85
10	250	521	127	324	10.0	237		FP	1	28
12	300	622	140	381	10.0	287		FP	1	.94
14	350	686	152	413	10.5	317		FP	2	258

 Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.
 Nominal bores are based on Virgin PFA heavy duty liner and schedule 40 or 30 steel pipe. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us



Reducing Lateral Tee

Reducing Lateral Tee

exception that the branch leaves the main run-off from reactor outlets and to soften reducing tee.

50

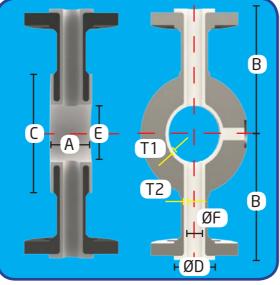
functionality as an equal tee with the body. They are often used to provide turbulent flow than the 90° branch of a

A reducing lateral tee provides the same body at 45° close to one end of the main changes in flow direction creating less

Re	duo	cing	Lateral Tee									Construction Code	s
				Centre Line	Centre Line	Line Raised	Branch Raised	Line Heavy Duty PFA Liner Thickness	Branch PFA Heavy Duty Liner Thickness	Line PFA Liner Bore	Branch PFA Liner Bore		t Steel PFA t Steel PTFE d Steel PFA
New		Dama		to Face	to Face	Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²		
Inch		Bore	mm	A mm	B	Ø C mm	Ø D mm	T1 mm	T2 mm	Ø E mm	Ø F mm	Construction Standard	Weight
1	X	1/2	25 x 15	146	44	51	35	4.0	4.5	20	12	FP	kg 2.8
1	 X	3/4	25 x 15 25 x 20	140	44	51	43	4.0	4.5	20	12	FP	3.1
1½	× ×	-74 1/2	40 x 15	140	51	73	35	4.0	4.5	33	12	FP FP	4.4
1½	x	3/4	40 x 13 40 x 20	178	51	73	43	4.5	4.5	33	12	FP	4.4
1½	×	1	40 x 20 40 x 25	178	51	73	51	4.5	4.0	33	20	FP	5.1
2	 X	1/2	50 x 15	203	64	92	35	4.5	4.5	44	12	FP	6.8
2	 X	3/4	50 x 15	203	64	92	43	4.5	4.5	44	12	FP	7.1
2	 X	1	50 x 20	203	64	92	51	4.5	4.0	44	20	FP	7.5
2	x		50 x 25	203	64	92	73	4.5	4.5	44	33	FP	8.4
3	x	1/2	80 x 15	254	76	127	35	6.5	4.5	66	12	FP	13
3	 X	3/4	80 x 20	254	76	127	43	6.5	4.5	66	12	FP	14
3	X	1	80 x 25	254	76	127	51	6.5	4.0	66	20	FP	14
3	X		80 x 40	254	76	127	73	6.5	4.5	66	33	FP	15
3	X	2	80 x 50	254	76	127	92	6.5	4.8	66	44	FP	16
4	X	1/2	100 x 15	305	76	157	35	9.0	4.5	86	12	FP	20
4	X	3/4	100 x 10	305	76	157	43	9.0	4.5	86	12	FP	20
4	X	1	100 x 25	305	76	157	51	9.0	4.0	86	20	FP	21
4		1½	100 x 40	305	76	157	73	9.0	4.5	86	33	FP	22
4	x	2	100 x 10	305	76	157	92	9.0	4.8	86	44	FP	23
4	X	3	100 x 80	305	76	157	127	9.0	6.5	86	66	FP	27
6	X	1/2	150 x 15	368	89	216	35	11.0	4.5	137	12	FP	33
6	<u>х</u>	3/4	150 x 15	368	89	216	35	11.0	4.5	137	12	FP	34
6	x	1	150 x 25	368	89	216	51	11.0	4.0	137	12	FP	34

Reducing	Lateral Tee									Construction Codes	
		1		1	1	1.1	Durant			Code Steelwoo	k Lining
						Line Heavy Duty PFA	Branch PFA Heavy	Line	Branch	CP Cast	_
		Centre	Centre	Line	Branch	Liner	Duty Liner	PFA Liner	PFA Liner	CT Cast	
		Line to Face	Line to Face	Raised Face	Raised Face	Thickness Nominal ¹	Thickness Nominal ¹	Bore Nominal ²	Bore Nominal ²	FP Fabricated	_
Nominal Bore		A	В	ØC	ØD	T1	T2	ØE	ØF	Construction	Weight
Inches	mm	mm	mm	mm	mm	mm	mm	mm	mm	Standard	kg
6 x 1½	150 x 40	368	89	216	73	11.0	4.5	137	33	FP	35
6 x 2	150 x 50	368	89	216	92	11.0	4.8	137	44	FP	37
6 x 3	150 x 80	368	89	216	127	11.0	6.5	137	66	FP	41
6 x 4	150 x 100	368	89	216	157	11.0	9.0	137	86	FP	45
8 x 1	200 x 25	444	114	270	51	10.0	4.0	186	20	FP	53
8 x 1½	200 x 40	444	114	270	73	10.0	4.5	186	33	FP	55
8 x 2	200 x 50	444	114	270	92	10.0	4.8	186	44	FP	56
8 x 3	200 x 80	444	114	270	127	10.0	6.5	186	66	FP	62
8 x 4	200 x 100	444	114	270	157	10.0	9.0	186	86	FP	66
8 x 6	200 x 150	444	114	270	216	10.0	11.0	186	137	FP	75
10 x 1	250 x 25	521	127	324	51	10.0	4.0	237	20	FP	79
10 x 1½	250 x 40	521	127	324	73	10.0	4.5	237	33	FP	80
10 x 2	250 x 50	521	127	324	92	10.0	4.8	237	44	FP	82
10 x 3	250 x 80	521	127	324	127	10.0	6.5	237	66	FP	88
10 x 4	250 x 100	521	127	324	157	10.0	9.0	237	86	FP	93
10 x 6	250 x 150	521	127	324	216	10.0	11.0	237	137	FP	103
10 x 8	250 x 200	521	127	324	270	10.0	10.0	237	186	FP	114
12 x 1	300 x 25	622	140	381	51	10.0	4.0	287	20	FP	119
12 x 1½	300 x 40	622	140	381	73	10.0	4.5	287	33	FP	120
12 x 2	300 x 50	622	140	381	92	10.0	4.8	287	44	FP	122
12 x 3	300 x 80	622	140	381	127	10.0	6.5	287	66	FP	129
12 x 4	300 x 100	622	140	381	157	10.0	9.0	287	86	FP	135
12 x 6	300 x 150	622	140	381	216	10.0	11.0	287	137	FP	147
12 x 8	300 x 200	622	140	381	270	10.0	10.0	287	186	FP	158
12 x 10	300 x 250	622	140	381	324	10.0	10.0	287	237	FP	174
14 x 1	350 x 25	686	152	413	51	10.5	4.0	317	20	FP	157
14 x 1½	350 x 40	686	152	413	73	10.5	4.5	317	33	FP	159
14 x 2	350 x 50	686	152	413	92	10.5	4.8	317	44	FP	161
14 x 3	350 x 80	686	152	413	127	10.5	6.5	317	66	FP	168
14 x 4	350 x 100	686	152	413	157	10.5	9.0	317	86	FP	174
14 x 6	350 x 150	686	152	413	216	10.5	11.0	317	137	FP	187
14 x 8	350 x 200	686	152	413	270	10.5	10.0	317	186	FP	199
14 x 10	350 x 250	686	152	413	324	10.5	10.0	317	237	FP	216
14 x 12	350 x 300	686	152	413	381	10.5	10.0	317	287	FP	237
				10010	150	-					Contraction of the second

1 - Liner thicknesses are based on Virgin PFA heavy duty liner. For other materials consult the liner dimension tables in this manual. 2 - Nominal bores are based on Virgin PFA heavy duty liner and schedule 40 or 30 steel pipe. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.



Double Branch Instrument Tee

Double Branch Instrument Tee

attached to a wafer style line (a short line for the mounting of instruments and a as sizes are nominal.

Double branch instrument tees are in without flanges). They are used in place of specific bore is required for an instrument reality crosses with two ordinary branches crosses when space is an issue. If required please discuss this at the time of ordering

Do	bub	le B	ranch	n In	stru	ment Te	e							Constru	ction Codes	
						Body Face to	Centre Line to Face	Line Raised	Branch Raised	Line Heavy Duty PFA Liner Thickness	Branch Heavy Duty PFA Liner Thickness	Line PFA Liner Bore	Branch PFA Liner Bore	CP CT FP	Steelwork Cast Ste Cast Ste Fabricated Ste	eel PTFE
						Face	Branch	Face	Face	Nominal ¹	Nominal ¹	Nominal	Nominal	FT	Fabricated St	
		Bore				A	В	ØC	ØD	T1	T2	ØE	ØF			Weight
Inc			mm	- - 1		mm	mm	mm	mm	mm	mm	mm	mm	St	andard	kg
1/2	×	1/23	15	X	15	51	65	35	35	4.5	4.5	12	12		FP	1.5
∛4	X	1⁄23	20	X	15	51	75	43	35	4.5	4.5	12	12	<u> </u>	FP	1.8
3⁄4	X	3∕44	20	X	20	51	75	43	43	4.5	4.5	12	12	<u> </u>	FP	2.3
1	X	1⁄23	25	X	15	51	89	51	35	4.0	4.5	20	12	<u> </u>	FP	2.4
1	X	¾4	25	X	20	51	89	51	43	4.0	4.5	20	12	<u> </u>	FP	2.7
1	×	15	25	X	25	51	89	51	51	4.0	4.0	20	20	<u> </u>	FP	3.4
1½	×	1∕2³	40	X	15	51	102	73	35	4.5	4.5	33	12		FP	2.7
1½	×	3∕44	40	X	20	51	102	73	43	4.5	4.5	33	12	<u> </u>	FP	3.3
1½	×	1	40	X	25	51	102	73	51	4.5	4.0	33	20		FP	4.1
1½	×	1½	40	X	40	76	102	73	73	4.5	4.5	33	33		FP	5.6
2	X	1∕2³	50	X	15	51	114	92	35	4.8	4.5	44	12		FP	3.6
2	×	3∕44	50	X	20	51	114	92	43	4.8	4.5	44	12		FP	4.2
2	X	1	50	X	25	51	114	92	51	4.8	4.0	44	20		FP	5.0
2	X	1½	50	X	40	76	114	92	73	4.8	4.5	44	33		FP	7.0
2	×	2	50	X	50	89	114	92	92	4.8	4.8	44	44		FP	9.4
3	X	1∕2³	80	x	15	51	140	127	35	6.5	4.5	66	12		FP	5
3	X	3∕44	80	x	20	51	140	127	43	6.5	4.5	66	12		FP	6
3	x	1	80	x	25	51	140	127	51	6.5	4.0	66	20		FP	7
3	x	1½	80	x	40	76	140	127	73	6.5	4.5	66	33		FP	9
3	x	2	80	x	50	89	140	127	92	6.5	4.8	66	44		FP	12
З	x	З	80	x	80	150	140	127	127	6.5	6.5	66	66		FP	22
4	x	1∕2³	100	x	15	51	165	157	35	9.0	4.5	86	12		FP	8
4	x	3⁄44	100	x	20	51	165	157	43	9.0	4.5	86	12		FP	9
4	x	1	100	x	25	51	165	157	51	9.0	4.0	86	20		FP	10
52										1907	2 Re	23		1		

Do	bub	le B	ranch	n In	strun	nent Tee	5							Constr	uction Codes	
							-	1		Line	Branch			Code	Steelwor	k Lining
							Centre			Heavy Duty	Heavy Duty	Line	Branch	СР	Cast S	
						Body	Line	Line	Branch	PFA Liner	PFA Liner	PFA Liner	PFA Liner	СТ	Cast S	
						Face to Face	to Face Branch	Raised Face	Raised Face	Thickness Nominal ¹	Thickness Nominal ¹	Bore Nominal	Bore Nominal	FP FT	Fabricated S	
Nor	nina	l Bore				A	В	ØC	ØD	T1	T2	ØE	ØF		truction	Weight
Incl	nes		mm			mm	mm	mm	mm	mm	mm	mm	mm	S	tandard	kg
6	x	1∕2³	150	x	15	51	203	216	35	11.0	4.5	137	12		FP	10
6	x	3∕44	150	x	20	51	203	216	43	11.0	4.5	137	12		FP	10
6	x	1	150	x	25	51	203	216	51	11.0	4.0	137	20		FP	12
6	x	1½	150	x	40	76	203	216	73	11.0	4.5	137	33		FP	16
6	x	2	150	x	50	89	203	216	92	11.0	4.8	137	44		FP	20
67	x	3	150	x	80	150	203	216	127	11.0	6.5	137	66		FP	36
8	x	1	200	x	25	51	229	270	51	10.0	4.0	186	20		FP	8
8	x	1½	200	x	40	76	229	270	73	10.0	4.5	186	33		FP	10
8	х	2	200	x	50	89	229	270	92	10.0	4.8	186	44		FP	13
8	х	3	200	x	80	150	229	270	127	10.0	6.5	186	66		FP	24
10	x	1	250	x	25	51	279	324	51	10.0	4.0	237	20		FP	21
10	x	1½	250	x	40	76	279	324	73	10.0	4.5	237	33		FP	29
10	x	2	250	x	50	89	279	324	92	10.0	4.8	237	44		FP	36
12	x	1	300	x	25	51	305	381	51	10.0	4.0	287	20		FP	27
12	x	1½	300	x	40	76	305	381	73	10.0	4.5	287	33		FP	38
12	x	2	300	x	50	89	305	381	92	10.0	4.8	287	44		FP	46
127	х	3	300	x	80	150	305	381	127	10.0	6.5	287	66		FP	79
14	x	1	350	x	25	51	356	413	51	10.5	4.0	317	20		FP	32
14	x	1½	350	x	40	76	356	413	73	10.5	4.5	317	33		FP	46
14	x	2	350	x	50	89	356	413	92	10.5	4.8	317	44		FP	56
14	x	3	350	x	80	150	356	413	127	10.5	6.5	317	66		FP	96

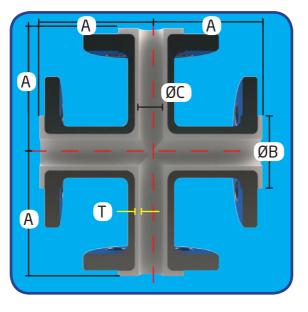
1 - Please note liner thicknesses are based on Virgin PFA, for other materials consult the liner tables in the manual. 2 - Bore is based on Virgin PFA, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the manual. 3 - On 1/2in branch a 3/4in pipe is used.

4 - On 3/4in branch a 1in pipe is used.

5 - Because of the need to pass through the line bolts the branch has a reduced bore in a 1.1/2in pipe.

6 - Because of the need to pass through the line bolts the branch has a reduced bore in a 2in pipe.

7 - Only with UNC bolting.



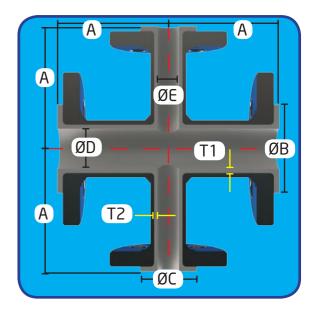
Equal Cross

Reducing Cross

These provide an additional branch to dimensional format. Special components be manufactured. an equal tee and are based on the same of differing branch length or exit angle can

Equal C	ross					Con	struction Co	des	
		Centre Line to Face	Raised Face	Heavy Duty PFA Liner Thickness Nominal ¹	PFA Liner Bore Nominal ²	Cod CP CT FP FT	(Fabrica	Elwork Cast Steel Cast Steel ated Steel ated Steel	Lining PFA PTFE PFA PTFE
Nomina	l Bore	А	ØВ	Т	ØC	Construc	tion	Weig	ght
Inches	mm	mm	mm	mm	mm	Stand	lard		kg
1/2	15	65	35	4.5	12		FP		2.0
3⁄4	20	75	43	4.5	12		FP		3.1
1	25	89	51	4.0	20		FP	4	4.3
1½	40	102	73	4.5	33		FP		7.3
2	50	114	92	4.8	44		FP	1	1.6
3	80	140	127	6.5	66		FP		24
4	100	165	157	9.0	86		FP		35
6	150	203	216	11.0	137		FP		60
8	200	229	270	10.0	186		FP		93
10	250	279	324	10.0	237		FP	1	41
12	300	305	381	10.0	287		FP	2	06
14	350	356	413	10.5	317		FP	2	83

1 - Liner thicknesses are based on PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.


2 - Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty liner. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.

These provide an additional branch to dimensional format. Special components be manufactured. reducing tee and are based on the same of differing branch length or exit angle can

Re	duc	ing (Cross										Constru	iction Codes	
						Contro	Line	Dreach	Line Heavy Duty	Branch Heavy Duty	Line	Branch	Code CP CT	Steelwo Cast Cast	Steel PFA
						Centre Line	Line Raised	Branch Raised	PFA Liner Thickness	PFA Liner Thickness	PFA Liner Bore	PFA Liner Bore	FP	Fabricated	Steel PFA
						to Face	Face	Face	Nominal ¹	Nominal ¹	Nominal ²	Nominal ²	FT	Fabricated	Steel PTFE
Nom	ninal E	Bore				A	ØВ	ØC	T1	T2	ØD	ØE	Mat	erials	Weight
Inch	es		mm			mm	mm	mm	mm	mm	mm	mm	Star	ndard	kg
3⁄4	Х	1/2	20	Х	15	75	43	35	4.5	4.5	12	12		FP	2.6
1	Х	1/2	25	Х	15	89	51	35	4.0	4.5	20	12		FP	3.2
1	х	3⁄4	25	Х	20	89	51	43	4.0	4.5	20	12		FP	3.8
1½	х	1/2	40	х	15	102	73	35	4.5	4.5	33	12		FP	4.8
1½	х	3∕4	40	х	20	102	73	43	4.5	4.5	33	12		FP	5.3
1½	х	1	40	х	25	102	73	51	4.5	4.0	33	20		FP	5.9
2	х	1/2	50	х	15	114	92	35	4.8	4.5	44	12		FP	6.9
2	х	3⁄4	50	х	20	114	92	43	4.8	4.5	44	12		FP	7.5
2	х	1	50	х	25	114	92	51	4.8	4.0	44	20		FP	8.1
2	х	1½	50	х	40	114	92	73	4.8	4.5	44	33		FP	9.6
З	х	1/2	80	х	15	140	127	35	6.5	4.5	66	12		FP	13
3	х	3⁄4	80	х	20	140	127	43	6.5	4.5	66	12		FP	14
3	х	1	80	х	25	140	127	51	6.5	4.0	66	20		FP	14
3	х	1½	80	х	40	140	127	73	6.5	4.5	66	33		FP	16
3	х	2	80	х	50	140	127	92	6.5	4.8	66	44		FP	18
4	х	1/2	100	х	15	165	157	35	9.0	4.5	86	12		FP	19
4	х	3⁄4	100	х	20	165	157	43	9.0	4.5	86	12		FP	20
4	х	1	100	х	25	165	157	51	9.0	4.0	86	20		FP	20
4	х	1½	100	х	40	165	157	73	9.0	4.5	86	33		FP	22
4	х	2	100	х	50	165	157	92	9.0	4.8	86	44		FP	24
4	х	З	100	х	80	165	157	127	9.0	6.5	86	66		FP	30
6	х	1/2	150	х	15	203	216	35	11.0	4.5	137	12	1	FP	32
6	х	3⁄4	150	х	20	203	216	43	11.0	4.5	137	12		FP	32

Reducing Cross

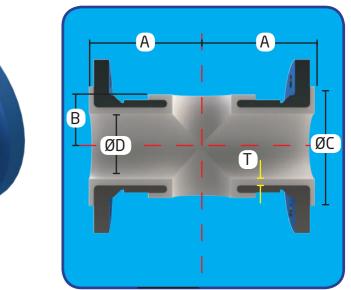
the corrosion expert

Short Stack Cross

Re	duc	ing (Iross										Construction C	odes
									Line Heavy Duty	Branch Heavy Duty	Line	Branch	CP	elwork Lining Cast Steel PFA Cast Steel PTFE
						Centre Line to Face	Line Raised Face	Branch Raised Face	PFA Liner Thickness Nominal ¹	PFA Liner Thickness Nominal ¹	PFA Liner Bore Nominal ²	PFA Liner Bore Nominal ²		ated Steel PFA
Non	ninal E	Bore				А	ØВ	ØC	T1	T2	ØD	ØE	Materials	Weight
Inch	nes		mm			mm	mm	mm	mm	mm	mm	mm	Standard	kg
6	Х	1½	150	Х	40	203	216	73	11.0	4.5	137	33	FP	35
6	Х	2	150	Х	50	203	216	92	11.0	4.8	137	44	FP	37
6	Х	З	150	Х	80	203	216	127	11.0	6.5	137	66	FP	44
6	Х	4	150	Х	100	203	216	157	11.0	9.0	137	86	FP	50
8	Х	1	200	Х	25	229	270	51	10.0	4.0	186	20	FP	49
8	х	1½	200	х	40	229	270	73	10.0	4.5	186	33	FP	51
8	х	2	200	х	50	229	270	92	10.0	4.8	186	44	FP	54
8	х	3	200	х	80	229	270	127	10.0	6.5	186	66	FP	61
8	Х	4	200	х	100	229	270	157	10.0	9.0	186	86	FP	67
8	х	6	200	х	150	229	270	216	10.0	11.0	186	137	FP	79
10	х	1	250	х	25	279	324	51	10.0	4.0	237	20	FP	74
10	х	1½	250	х	40	279	324	73	10.0	4.5	237	33	FP	76
10	х	2	250	х	50	279	324	92	10.0	4.8	237	44	FP	78
10	х	З	250	х	80	279	324	127	10.0	6.5	237	66	FP	86
10	х	4	250	х	100	279	324	157	10.0	9.0	237	86	FP	93
10	х	6	250	х	150	279	324	216	10.0	11.0	237	137	FP	106
10	х	8	250	х	200	279	324	270	10.0	10.0	237	186	FP	122
12	х	1	300	х	25	305	381	51	10.0	4.0	287	20	FP	107
12	х	1½	300	х	40	305	381	73	10.0	4.5	287	33	FP	109
12	х	2	300	х	50	305	381	92	10.0	4.8	287	44	FP	112
12	х	З	300	х	80	305	381	127	10.0	6.5	287	66	FP	120
12	х	4	300	х	100	305	381	157	10.0	9.0	287	86	FP	127
12	х	6	300	х	150	305	381	216	10.0	11.0	287	137	FP	141
12	х	8	300	х	200	305	381	270	10.0	10.0	287	186	FP	157
12	х	10	300	х	250	305	381	324	10.0	10.0	287	237	FP	177
14	х	1	350	х	25	356	413	51	10.5	4.0	317	20	FP	145
14	х	1½	350	х	40	356	413	73	10.5	4.5	317	33	FP	148
14	х	2	350	х	50	356	413	92	10.5	4.8	317	44	FP	150
14	х	3	350	х	80	356	413	127	10.5	6.5	317	66	FP	159
14	х	4	350	х	100	356	413	157	10.5	9.0	317	86	FP	167
14	х	6	350	х	150	356	413	216	10.5	11.0	317	137	FP	183
14	х	8	350	х	200	356	413	270	10.5	10.0	317	186	FP	200
14	х	10	350	х	250	356	413	324	10.5	10.0	317	237	FP	222
14	х	12	350	х	300	356	413	381	10.5	10.0	317	287	FP	253

A short stack cross provides the more spa functionality of a cross, but with much where spa

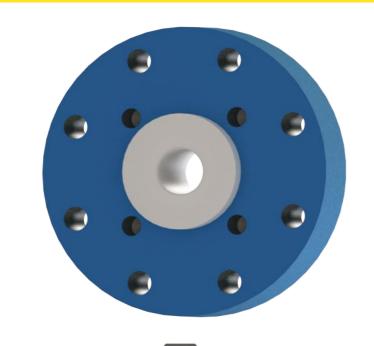
2	more space saving, so
۱	where space is at a pre

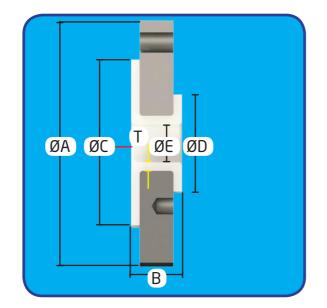

Short S	Stack Cr	055						Constru	iction Codes	
								Code	Steelwork	Lining
					Heavy Duty			CP	Cast Steel	PFA
		Centre	Centre		PFA Liner	PFA Liner		CT FP	Cast Steel Fabricated Steel	PTFE PFA
		Line	Line	Raised	Thickness	Bore		FT FT	Fabricated Steel	
		to Face	to Face	Face	Nominal ¹	Nominal ²				
Nomina	al Bore	А	В	ØC	Т	ØD	Mate	erials	s Wei	ght
Inches	mm	mm	mm	mm	mm	mm	Stan	dard	I	kg
1	25	89	30	51	4.0	20		FP		3.9
1½	40	102	37	73	4.5	33		FP		6.6
2	50	114	43	92	4.8	44		FP	<u>ין 1</u>	0.6
3	80	140	56	127	6.5	66		FP		21
4	100	165	67	157	9.0	86		FP		31
6	150	203	105	216	11.0	137		FP		53

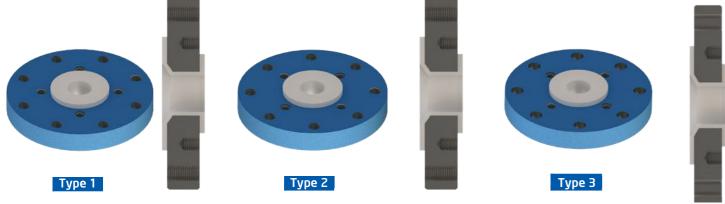
Liner thicknesses are based on PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.
 Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty liner. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.

1 - Liner thicknesses are based on PFA heavy duty liner. For other materials consult the liner dimension tables in this manual.

2 - Nominal bores are based on schedule 40 or 30 steel pipe and PFA heavy duty liner. Because of the method of manufacture and steel tolerances this can be a guide only. For other materials and thicknesses please consult the liner dimension tables in this manual. If you require a precise dimension for instrument, mixer or other insertion or a calibrated volume in the product please consult us.




tends to be selected remium.


Reducing Flange Parallel Bore

Reducing Flange Parallel Bore

A reducing flange is essentially a plate flange providing a sharp reduction in line bore of one or many size reductions.

A parallel bore gives the most abrupt transition from one bore to the next, but can be specified where more support to other materials is required from the flange. These are often used against brick lined piping.

These are generally PTFE lined, but can be lined in PFA. They provide a more space saving alternative to concentric reducers, but cannot present the same flow characteristics.

Reducing flanges can be grouped into three main configurations - type 1, 2 & 3. The configuration is dictated by the proximity of the small bore bolt holes to the large bore bolt holes. Each type is designed so that they do not clash and that the nuts can be fitted successfully. Type 3 flanges have through clearance

holes for the large nominal bore bolts and blind threaded holes for the small nominal bore. These are used where there is a significant reduction in bores. Where the reduction is not so great and the periphery of the smaller bore mating flange would impinge on the nuts then a type 2 flange is employed with all threaded bolt holes (through holes for the large nominal bore and blind holes for the small nominal bore) negating the use of nuts. Finally where the reduction in bores is quite small the bolt holes are all threaded with through holes for the large nominal bore and blind holes for the small nominal bore. These have to be staggered on/off centres so that they don't clash - a type 1 reducing flange

As a general rule, a type 3 is the default design. if this cannot be achieved because of the two joining flanges geometry, a type 2 is specified, and if this doesn't

work, then a type 1.

If you have site reasons for wanting to select another style, then a type 1 or 2 will always work where a type 3 does and a type 1 where a type 2 does. As standard Type 2 and 3 bolt holes are off/off centres.

There is another style of reducing flange available where the inner pattern of holes is on a raised platform and the outer holes are scalloped from this. This enables one to use type 3 style drillings i.e. through bolts on the large side, removing the necessity to have double threaded holes on the reducing flange. This is useful where one is coming up against items such as a threaded pad flange on a vessel. CRP can produce these and many other special reducing flanges just call us to discuss.

		III IS I	ridiig	e P	aralle	el Bore								Constru	iction Codes	
														Code	Steelwork	Lining
										Small	Minimum	Minimum		СР	Cast Steel Cast Steel	PFA PTFE
								Face to	Large NB Raised	NB Raised	Heavy Duty PFA Liner	HiPerFlon PTFE Liner	Bore	FP	Fabricated Steel	PFA
							Flange	Face	Face	Face	Thickness ¹	Thickness ¹	Nominal ²	FT	Fabricated Steel	PTFE
Nomin		re				Flange	ØA	В	ØC	ØD	T		ØE		Construction	Weight
Inches		1/	mm		15	Type	mm	mm	mm 4 D	mm วเป	mm	mm	mm 1 r	Standard	To Order	kg 1 D
3⁄4	Х	1/2	20	Х	15	Type 1	100	30	43	35	5	3	15	FP	FT	1.3
1	х	1/2	25	Х	15	Type 1	110	30	51	35	5	3	15	FP	FT	1.6
1	х	3⁄4	25	х	20	Type 1	110	30	51	43	5	3	15	FP	FT	1.6
1½	х	1/2	40	Х	15	Type 2	125	30	73	35	5	3	15	FP	FT	2.1
1½	х	3⁄4	40	х	20	Type 1	125	30	73	43	5	3	15	FP	FT	2.1
1½	х	1	40	х	25	Type 1	125	30	73	51	5	3	18	FP	FT	2.0
2	х	1/2	50	х	15	Type 2	150	30	92	35	5	З	15	FP	FT	3.0
2	х	3⁄4	50	х	20	Type 2	150	30	92	43	5	3	15	FP	FT	3.0
2	х	1	50	х	25	Type 2	150	30	92	51	5	3	18	FP	FT	3.0
2	Х	1½	50	х	40	Type 1	150	30	92	73	5	3	32	FP	FT	2.9
3	х	1/2	80	х	15	Type 3	190	35	127	35	5	3	15	FP	FT	6
3	х	3⁄4	80	х	20	Type 3	190	35	127	43	5	3	15	FP	FT	6
3	х	1	80	х	25	Type 3	190	35	127	51	5	3	18	FP	FT	6
3	х	1½	80	х	40	Type 2	190	35	127	73	5	3	32	FP	FT	6
3	х	2	80	х	50	Type 1	190	35	127	92	5	3	43	FP	FT	6
4	x	1/2	100	х	15	Type 3	230	35	157	35	5	5	15	FP	FT	9
4	x	3⁄4	100	х	20	Type 3	230	35	157	43	5	5	15	FP	FT	9
4	<u>х</u>	1	100	x	25	Type 3	230	35	157	51	5	5	18	FP	FT	9
4	<u>х</u>	1½	100	x	40	Type 3	230	35	157	73	5	5	32	FP	FT	9
4	x	2	100	x	50	Type 3	230	35	157	92	5	5	43	FP	FT	9
4	×	3	100	x	80	Type 1	230	35	157	127	5	5	70	FP	FT	8
6	×	1/2	150	x	15	Type 3	280	40	216	35	5	5	15	FP	FT	16
6		3/4	150		20		280	40	210	43	5	5	15	FP	FT	16
6	X	1	150	X	20	Type 3	280	40	210	45 51	5	5		FP		16
	X			X		Type 3					5		18		FT	
6	X	1½	150	X	40	Type 3	280	40	216	73		5	32	FP		16
	X	2	150	X	50	Type 3	280	40	216	92	5	5	43	FP		16
6	Х	3	150	x	80	Type 3	280	40	216	127	5	5	70	FP		15
	X	4	150	X	100	Type 2	280	40	216	157	5	5	93	FP		15
8	Х	1/2	200	Х	15	Type 3	345	40	270	35	5	5	15	FT		25
8	Х	3/4	200	Х	20	Type 3	345	40	270	43	5	5	15	FT	FP	25
	Х	1	200	Х	25	Type 3	345	40	270	51	5	5	18	FT	FP	25
8	Х	1½	200	Х	40	Туре З	345	40	270	73	5	5	32	FT		25
8	Х	2	200	Х	50	Type 3	345	40	270	92	5	5	43	FT		25
8	Х	3	200	Х	80	Туре З	345	40	270	127	5	5	70	FT	FP	24
8	Х	4	200	Х	100	Type 3	345	40	270	157	5	5	93	FT		24
8	Х	6	200	х	150	Type 2	345	40	270	216	5	5	145	FT		21
10	Х	1/2	250	х	15	Туре З	405	35	324	35	6 65	5	15	FT	FP	35
10	Х	∛4	250	х	20	Туре З	405	35	324	43	5	5	15	FT	FP	35
10	х	1	250	х	25	Туре З	405	35	324	51	5	5	18	FT	FP	35
10	х	1½	250	x	40	Туре З	405	35	324	73	5	5	32	FT	FP	35
10	х	2	250	x	50	Type 3	405	35	324	92	5	5	43	FT	FP	35

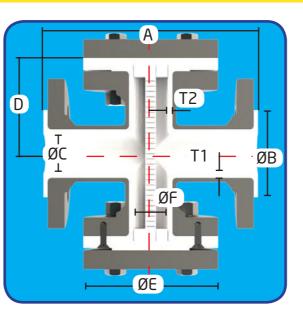
Reducing Flange Parallel Bore

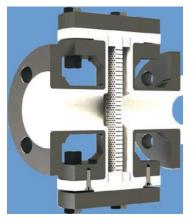
Reducing Flange Parallel Bore

itted	ucii	1811	unge	i ui	allel E						Minimum	Minimum		Code CP	e Steelwork Cast St	_
									Large NB	Small NB	Heavy Duty	HiPerFlon		ст СТ	Cast St	
							Flange	Face to Face	Raised Face	Raised Face	PFA Liner Thickness ¹	PTFE Liner Thickness ¹	Bore Nominal ²	FP	Fabricated St Fabricated St	-
Nomina	al Bore					Class and	ØA	В	ØC	ØD	T	T	ØE		onstruction	V
Inches			mm			Flange Type	mm	mm	mm	mm	mm	mm	mm	Standard	To Order	
10	х	З	250	х	80	Туре З	405	35	324	127	5	5	70	FT	FP	
10	х	4	250	х	100	Type 3	405	35	324	157	5	5	93	FT	FP	
10	х	6	250	х	150	Туре З	405	35	324	216	5	5	145	FT	FP	
10	х	8	250	х	200	Type 2	405	35	324	270	5	5	196	FT	FP	
12	х	1/2	300	х	15	Туре З	485	40	381	35	5	5	15	FT	FP	
12	х	3∕4	300	х	20	Туре З	485	40	381	43	5	5	15	FT	FP	
12	х	1	300	х	25	Type 3	485	40	381	51	5	5	18	FT	FP	
12	х	1½	300	х	40	Type 3	485	40	381	73	5	5	32	FT	FP	
12	х	2	300	х	50	Type 3	485	40	381	92	5	5	43	FT	FP	
12	х	3	300	х	80	Туре З	485	40	381	127	5	5	70	FT	FP	
12	х	4	300	х	100	Туре З	485	40	381	157	5	5	93	FT	FP	
12	х	6	300	х	150	Туре З	485	40	381	216	5	5	145	FT	FP	
12	х	8	300	х	200	Туре З	485	40	381	270	5	5	196	FT	FP	
12	х	10	300	х	250	Type 2	485	40	381	324	5	5	250	FT	FP	
14	х	1/2	350	х	15	Type 3	535	40	413	35	5	5	15	FT	FP	
14	х	3⁄4	350	х	20	Type 3	535	40	413	43	5	5	15	FT	FP	
14	х	1	350	х	25	Туре З	535	40	413	51	5	5	18	FT	FP	
14	х	1½	350	х	40	Type 3	535	40	413	73	5	5	32	FT	FP	
14	х	2	350	x	50	Type 3	535	40	413	92	5	5	43	FT	FP	
14	х	З	350	x	80	Type 3	535	40	413	127	5	5	70	FT	FP	
14	х	4	350	x	100	Type 3	535	40	413	157	5	5	93	FT	FP	
14	х	6	350	x	150	Type 3	535	40	413	216	5	5	145	FT	FP	
14	х	8	350	x	200	Type 3	535	40	413	270	5	5	196	FT	FP	
14	х	10	350	x	250	Type 3	535	40	413	324	5	5	250	FT	FP	
14	х	12	350	х	300	Type 1	535	40	413	381	5	5	301	FT	FP	
16	х	1/2	400	x	15	Type 3	595	40	470	35	5	5	15	FT	FP	
16	х	3⁄4	400	x	20	Type 3	595	40	470	43	5	5	15	FT	FP	
16	x	1	400	x	25	Type 3	595	40	470	51	5	5	18	FT	FP	-
16	x	- 1½	400	x	40	Туре З	595	40	470	73	5	5	32	FT	FP	-
16	х	2	400	х	50	Type 3	595	40	470	92	5	5	43	FT	FP	
16	x	3	400	x	80	Туре З	595	40	470	127	5	5	70	FT	FP	-
16	x	4	400	x	100	Туре З	595	40	470	157	5	5	93	FT	FP	-
16	x	6	400	x	150	Туре З	595	40	470	216	5	5	145	FT	FP	
16	x	8	400	x	200	Туре З	595	40	470	270	5	5	196	FT	FP	
16	x	10	400	x	250	Туре З	595	40	470	324	5	5	250	FT	FP	-
16	x	12	400	X	300	Туре З	595	40	470	381	5	5	301	FT	FP	
16	x	14	400	x	350	Type 2	595	40	470	413	5	5	326	FT	FP	
18	x	1/2	450	x	15	Type 3	635	40	533	35	5	5	15	FT	FP	
18	x	3/4	450	x	20	Type 3	635	40	533	43	5	5	15	FT	FP	
18	x	1	450	X	25	Type 3	635	40	533	51	5	5	18	FT	FP	
18	x	1½	450	X	40	Type 3	635	40	533	73	5	5	32	FT	FP	
18	x	2	450	 X	50	Type 3	635	40	533	92	5	5	43	FT	FP	1
18	x	3	450	 X	80	Type 3	635	40	533	127	5	5	70	FT	FP	1
10	~	5		~	50	1.366.2	000	-10	555	117	5	1000	10	1.1		\bigcirc

Red	lucir	ng Fl	ange	Par	allel E	Bore									struction Codes	
						Flange Type	Flange	Face to Face	Large NB Raised Face	Small NB Raised Face	Minimum. Heavy Duty PFA Liner Thickness ¹	Minimum. HiPerFlon PTFE Liner Thickness ¹	Bore Nominal ²	Cod CP CT FP FT	e Steelworl Cast S Cast S Cast S Fabricated S Fabricated S	iteel PFA iteel PTFE iteel PFA
145No	ominal (Bore196	i				ØA	В	ØC	ØD	Т	Т	ØE	Cc	onstruction	Weight
Inches			mm				mm	mm	mm	mm	mm	mm	mm	Standard	To Order	kg
18	х	4	450	Х	100	Туре З	635	40	533	157	5	5	93	FT	FP	109
18	х	6	450	х	150	Туре З	635	40	533	216	5	5	145	FT	FP	106
18	х	8	450	х	200	Туре З	635	40	533	270	5	5	196	FT	FP	101
18	х	10	450	х	250	Туре З	635	40	533	324	5	5	250	FT	FP	95
18	х	12	450	х	300	Туре З	635	40	533	381	5	5	301	FT	FP	87
18	х	14	450	х	350	Type 2	635	40	533	413	5	5	326	FT	FP	81
18	х	16	450	х	400	Type 1	635	40	533	470	5	5	377	FT	FP	103
20	х	1/2	500	х	15	Туре З	700	53	584	35	5	5	15	FT	FP	153
20	х	3⁄4	500	х	20	Туре З	700	53	584	43	5	5	15	FT	FP	153
20	х	1	500	х	25	Туре З	700	53	584	51	5	5	18	FT	FP	153
20	Х	1½	500	х	40	Туре З	700	53	584	73	5	5	32	FT	FP	153
20	Х	2	500	х	50	Туре З	700	53	584	92	5	5	43	FT	FP	153
20	Х	З	500	х	80	Туре З	700	53	584	127	5	5	70	FT	FP	152
20	Х	4	500	х	100	Туре З	700	53	584	157	5	5	93	FT	FP	151
20	Х	6	500	х	150	Туре З	700	53	584	216	5	5	145	FT	FP	147
20	х	8	500	х	200	Туре З	700	53	584	270	5	5	196	FT	FP	142
20	Х	10	500	х	250	Туре З	700	53	584	324	5	5	250	FT	FP	134
20	х	12	500	х	300	Туре З	700	53	584	381	5	5	301	FT	FP	126
20	Х	14	500	х	350	Туре З	700	53	584	413	5	5	326	FT	FP	118
20	х	16	500	х	400	Type 2	700	53	584	470	5	5	377	FT	FP	143
20	х	18	500	х	450	Type 1	700	53	584	533	5	5	425	FT	FP	141
24	Х	1/2	600	х	15	Type 3	815	57	692	35	5	5	15	FT	FP	229
24	х	3⁄4	600	х	20	Туре З	815	57	692	43	5	5	15	FT	FP	229
24	x	1	600	x	25	Type 3	815	57	692	51	5	5	18	FT	FP	229
24	х	1½	600	х	40	Туре З	815	57	692	73	5	5	32	FT	FP	228
24	х	2	600	х	50	Туре З	815	57	692	92	5	5	43	FT	FP	228
24	х	3	600		80	Type 3	815	57	692	127	5	5	70		FP	227
24	х	4	600		100	Type 3	815	57	692	157	5	5	93		FP	226
24	х	6	600		150	Type 3	815	57	692	216	5	5	145		FP	222
24	x	8	600		200	Туре З	815	57	692	270	5	5	196	FT	FP	216
24	x	10	600		250	Type 3	815	57	692	324	5	5	250	- Color	FP	208
24	x	12	600		300	Туре З	815	57	692	381	5	5	301	FT	FP	198
24	X	14	600		350	Type 3	815	57	692	413	5	5	326	FT	FP	190
24	x	16	600		400	Туре З	815	57	692	470	5	5	377	FT	FP	218
24	x	18	600		450	Type 3	815	57	692	533	5	5	425	FT	FP	215
24	x	20	600		500	Type 2	815	57	692	584	5	5	473		FP	212
1 Diago	~				550	1.200	515	57	USE .	56 1	-		175			

1 - Please note liner thicknesses are based on Virgin PTFE, for other materials consult the liner tables in the manual. 2 - Bore is based on Virgin PTFE, because of method of manufacture and steel tolerances this is a guide only, for other materials and thicknesses please consult the liner tables in the manual



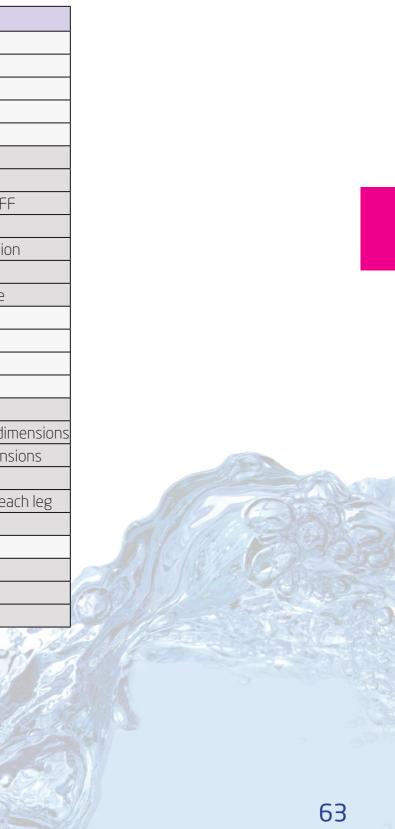

Strainer Cross

crp

Lined Piping Specials

These are crosses with a PTFE strainer as possible to 100% open area to help plate down the centre of them to filter the negate the pressure drop across the PTFE mixture flowing through it. Various hole sizes and free area are available. Please note whilst we've tried to get as close

plate for larger sizes this is not possible.


Strair	ner Cr	oss												Const	ruction Codes	
						<u> </u>								Code	Steelwork	Lining
				Line						Branch				CP	Cast Ste	
		Line		Heavy Duty PFA Liner	Line PFA Liner			Branch Centre	Branch	PFA Heavy Duty Liner	Branch PFA Liner			CT FP	Cast Ste Fabricated Ste	
		Face to	Raised	Thickness	Bore		Branch PFA Liner	Line to	Outer	Thickness	Bore			FT	Fabricated Ste	
		Face	Face	Nominal ¹	Nominal ²	-	Nominal		Diameter	Nominal ¹	Nominal ²		Max O	ben		
		A	ØB	T1	ØC		Bore	D	ØE	T2	ØF	Construction	A	rea	Open Area	Weight
Inches	mm	mm	mm	mm	mm	Inches	mm	mm	mm	mm	mm	Standard	п	nm²	%	kg
1	25	178	51	4.0	20	Z	50	114	60	4.8	44	FP	746	5	247	7.5
1½	40	204	73	4.5	33	З	80	140	89	6.5	66	FP	1610	D	188	12.8
2	50	228	92	4.8	44	З	80	140	89	6.5	66	FP	1610	5	106	20.1
З	80	300	127	6.5	66	6	150	203	168	11.0	137	FP	5655	5	165	44
4	100	340	157	9.0	86	8	200	229	219	10.0	186	FP	887	5	153	67
6	150	406	216	11.0	137	10	250	279	273	10.0	237	FP	14883	3	101	117
8	200	500	270	10.0	186	14	350	356	356	10.5	317	FP	25486	5	94	190
10	250	558	324	10.0	237	14	350	356	356	10.5	317	FP	25486	5	58	279
12	300	610	381	10.0	287	14	350	356	356	10.5	317	FP	25486	5	39	404
14	350	712	413	10.5	317	14	350	356	356	10.5	317	FP	25486	5	32	556

to special items. The table below indicates that it isn't required or cannot be made. some of the most popular variants on lined pipe and fittings, whist the phtographs on with us and let us find a solution if we can. the next page show some of the capability of the bsusiness. CRP does not see itself as a "catalogue" company. Our approach is one of problem solving and just because

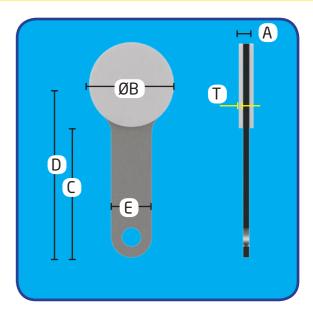
There is a significant choice when it comes it hasn't been made before doesn't mean Please discuss your corrosion problems

Spool & Fitting	g Options
Lining	HiPerFlon PTFE
	UHP PTFE
	Static-Dissipating PTFE
	Static-Dissipating PFA
	Super Vacuum Resistant (SVR)
Flanges	Fixed/Rotating
	Rotating/Rotating
	Different bolt centres e.g. ON/OF
	Metric drillings
	Non-standard bolt hole orientati
	Mixed flanges
	Flange not perpendicualr to pipe
Flange Design	ASME B16.5 Class 300
	DIN PN10/16
	JIS
	Customer special
Geometry	Longer or shorter radius
	Non standard cetreline to face d
	Non standard face to face dimer
	Different angles
	Dissimilar centreline to face on e
	Lugged wafer fittings
Flare Face	Full face lining
Housing Materials	Stainless steels
	Low temperature carbon steel
	Exotic metals
	and the second second

Lined Piping Specials

Blanking Spade

A handy aid for blanking off pumps, valves an isolation valve. and sections of piping; the function of blanking spades or paddle blanks is to separate shut-off plant systems from pressurised or operational systems and protect parts of systems from being subjected to higher pressures than their rated cut-off pressure. Blanking spades can also be used in connection with test pressurisation. They can also provide an additional layer of protection during maintenance work, guarding against

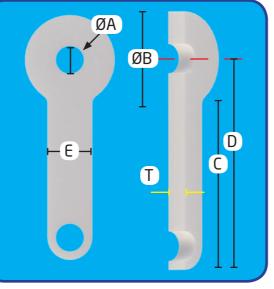

A wafer fitting, the disc is sized to fit inside the bolt circle for the relevant nominal bore. Both sides of the fitting have PTFE bonded to a stainless steel plate. A hole in the handle is for tagging the item if required. They are also available fully lined including the handle.

Ring spacers or paddle spacers can also be provided to maintain the piping position at times when blanking spades are not

Blanking Spade												
Nominal Bore		Face to Face		PTFE Liner Thickness	Handle Length	Length to Centre	Handle Width	-	Max Pressure Rating	Actual Max Pressure		
		A	ØB	T	C	D	E		Class 150	Ratings ¹	Weight	
Inches	mm 1 F	mm	mm	mm	mm	mm	mm	Construction	bar (g)	bar (g)	kg	
1/2	15		44		80	102	-	SS/PTFE	19.6	31.0	0.1	
3⁄4	20		54		83	110		SS/PTFE	19.6	31.0	0.1	
1	25		62		117	148		SS/PTFE	19.6	31.0	0.1	
1½	40		81		116	156		SS/PTFE	19.6	31.0	0.2	
2	50		100		112	162		SS/PTFE	19.6	22.0	0.3	
3	80]	132		112	178	OT	SS/PTFE	10.0	10.0	0.4	
4	100	7	170	2	109	194	26	SS/PTFE	5.9	5.9	0.7	
6	150		217		112	220	Pro-	SS/PTFE	2.6	2.6	1.2	
8	200	1	274	06	113	250	03	SS/PTFE	1.5	1.5	2	
10	250]	337	TAR!	132	300	Prof.	SS/PTFE	0.9	0.9	3	
12	300]	407	DI CA	137	340	1992	SS/PTFE	0.6	0.6	4	
14	350	In	447	20	147	370		SS/PTFE	0.5	0.5	5	
16	400	100	511	X	145	400	12	SS/PTFE	0.4	0.4	7	

1 - Maximum pressures when used in systems rated higher than 150lb (10 bar(g)).

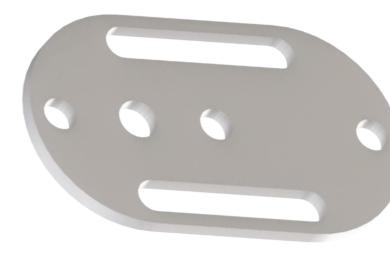
diameter as the blanking spade but a bore to suit the pipe line internal diameter.


CRP blanking spades are manufactured as a 7mm thick assembly to facilitate their use in existing piping systems through prising two flanges apart. However on larger nominal bores this thickness is insufficient to take the full potential line pressure and we recommend the selection of spectacle blinds.

Orifice Plate

Crp

Sliding Blind

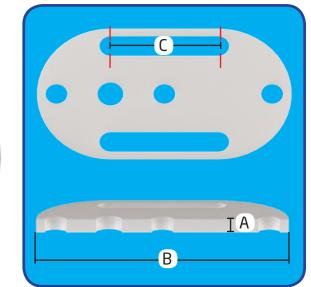


Orifice plates can be used for measuring sized to suit the application. The handle by the pressure rating, typically between flow rate, reducing line pressure or hole is usually made to the same diameter 3 and 25mm. They are also available for

restricting flow. These are generally to indicate what is in the line. Thicknesses higher pressure ratings as a PFA lined manufactured in solid PTFE with a hole are customer specified and are determined stainless steel component.

Orifice Plate											
		Maximum Hole ¹	Plate OD	Handle Length	Length to Centre	Handle Width		Max			
Nomina	al Bore	ØA	ØВ	C	D	E		Weight			
Inches	mm	mm	mm	mm	mm	mm	Construction	kg			
1/2	15	12	42	131	152	20	PTFE	0.1			
3⁄4	20	12	51	130	156	20	PTFE	0.1			
1	25	20	61	130	161	20	PTFE	0.1			
1½	40	33	80	130	170	20	PTFE	0.2			
2	50	44	99	128	178	30	PTFE	0.3			
3	80	56	130	130	195	40	PTFE	0.4			
4	100	69	169	130	215	40	PTFE	0.6			
6	150	91	217	112	220	40	PTFE	0.9			
8	200	111	274	113	250	40	PTFE	1.4			

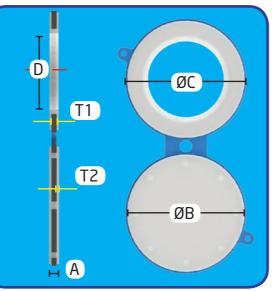
1 - Hole size is customer specified.


of blanking spade, combining the function solid PTFE in their open state they allow in the open or closed position. The slotted of the blanking spade with that of a ring spacer. They are built into the pipeline as a when slid into their closed position they For a more robust permanent blind please wafer fitting and require the flange bolting effectively seal the pipeline. They have select the Spectacle Blind. to be loosened in order for it to be slid

Sliding blinds are a more permanent form into either position. Manufactured from being quite clear as to whether the blind is the advantage over blanking spades of it

Sliding Blind											
Nominal Bore		Face to Face A	Blind Height B	Blind Travel C	Pressure Rating 23°C	Pressure Rating 100°C	Pressure Rating 200°C		Weight		
Inches	mm	mm	mm	mm	bar (g)	bar (g)	bar (g)	Construction	kg		
1/2	15	10	89	60	19.6 ^{1,2}	17.7 ²	13.8 ²	PTFE	0.2		
3⁄4	20	10	99	70	19.6 ²	17.7 ²	13.8 ²	PTFE	0.3		
1	25	10	108	79	19.6 ²	17.7 ²	13.8 ²	PTFE	0.4		
1½	40	10	127	98	19.6 ²	11.5	6.4	PTFE	0.5		
2	50	16	152	121	19.6 ²	17.7 ²	9.9	PTFE	0.8		
3	80	16	190	152	17.8	8.1	4.5	PTFE	2.0		
4	100	27	229	191	19.6 ²	13.4	7.4	PTFE	5.0		
6	150	27	279	241	12.9	5.9	3.3	PTFE	7.5		
8	200	27	343	298	7.3	3.3	1.8	PTFE	11		
10	250	25	430	445	4.6	2.1	1.2	PTFE	18		
12	300	27	483	529	3.3	1.5	0.8	PTFE	26		

1- Please note pressures are thickness dependant, if you require a higher pressure rating please contact us. 2 -The pressure rating of the sliding blind is greater than the pressure rating of the same size of Class 150 flange, so pressure ratings shown are for the flange. These items are highlighted in green.


unhindered flow through the pipeline, holes fit the bolting and align the blind.

Spectacle Blind

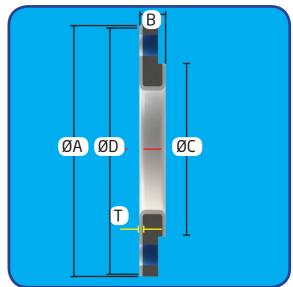
Crp

Full Face Adapter Flange

form of blanking spade, designed to be advantage over blanking spades of it not suffer from PTFE movement of the left installed within the pipeline. The being quite clear as to whether the blind flared faces which can occur with other spectacle blind or Figure 8 blank is a is in the open or closed position. The designs preventing the blind from being wafer fitting designed to swivel around CRP design is extremely robust with a inserted after a period out of line.

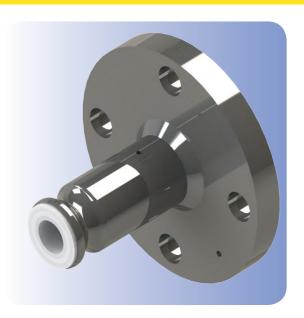
Spectacle blinds are a more permanent one of the flange bolts. They have the stainless steel core lined in PFA and does

Spectacle Blind												
		Face to Face	Raised Face	Steelwork Outer	Steelwork Thickness	PFA Liner Bore Nominal	Steelwork Inner	PFA Liner Thickness Nominal	Rotation Centre to Edge	Spin Centre to centre		
Nomina	l Bore	A	ØВ	ØC	T1	ØD	ØE	T2				Weight
Inches	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Construction	kg
1/2	15	11	35	44	6	13	18	2.5	70	30	SS/PFA	0.1
3∕4	20	11	43	54	6	16	22	2.5	80	35	SS/PFA	0.2
1	25	14	51	64	6	19	27	4.0	87	39	SS/PFA	0.3
1½	40	14	73	83	6	33	41	4.0	108	49	SS/PFA	0.5
2	50	14	92	102	6	44	53	4.0	130	61	SS/PFA	0.7
3	80	14	127	134	6	66	78	4.0	161	76	SS/PFA	1.2
4	100	16	157	172	8	86	102	4.0	200	96	SS/PFA	2.2
6	150	22	216	219	13	137	154	4.8	248	121	SS/PFA	4.6
8	200	28	270	276	15	186	203	6.5	305	149	SS/PFA	9
10	250	28	324	337	20	250	260	4.0	367	181	SS/PFA	12
12	300	28	381	406	20	290	300	4.0	438	216	SS/PFA	19
14	350	28	413	447	20	327	337	4.0	482	238	SS/PFA	24
16	400	33	470	511	25	377	387	5.0	546	269	SS/PFA	28


weaker dissimilar flange materials. A products usually have a flat face that or PFA raised face. The solution to this is common application is to join to GRP/FRP or thermoset and thermoplastic plastic bolted up in service this flat face bends lined across the full face. flanges. These may be piping elements or along the edge of the PTFE or PFA raised often valves. It is a mistake to consider face and does not achieve a seal on this that one can achieve a seal simply by lip. Further tightening just bends the

Occasionally lined piping is joined to fitting a gasket. This is because such weak flange and damages the soft PTFE

	Construction Codes										
Full Face	Code St	teelwork	Lining								
								CP CT	Cast Steel	PFA PTFE	
								CT FP Fabi	Cast Steel	PTFE	
				Delevel		Heavy Duty		FT Fabr	icated Steel	PTFE	
		Clange	Casa ta	Raised	PFA Full	PFA Liner					
		Flange OD	Face to Face	Face Diameter	Face Diameter	Thickness Nominal					
Nominal	Boro	ØA	ØB	ØC	ØD	T			Moio	aht	
						-	Constru	Construction		Weight	
Inches	mm	mm	mm	mm	mm	mm	Constru			kg	
1/2	15	90	21	35	88	5.0		FP	(0.5	
3⁄4	20	100	23	43	98	5.0		FP	(0.7	
1	25	110	24	51	108	5.0		FP		1.0	
1½	40	125	28	73	123	5.0		FP		1.6	
2	50	150	29	92	148	5.0		FP		2.5	
3	80	190	34	127	188	5.0		FP		5	
4	100	230	33	157	228	5.0		FP		6	
6	150	280	35	216	278	5.0		FP		9	
8	200	345	38	270	343	5.0		FP		15	
10	250	405	40	324	403	5.0		FP		20	
12	300	485	42	381	483	5.0		FP		31	




needs to seal on to the lined piping. When to fit a full face adapter flange which is

Camlock Hose Adapter

Venting Systems

Hose adaptors are used to connect hoses other hose fitting, leaving a flanged end to piping systems, they are usually made using stainless steel and PFA. Typically the hose adaptor connects to the hose camlock connectors - the least expensive using a tri-clamp, threaded, camlock or quick release hose coupling, but a variety

to connect to the fixed PTFE lined piping system. The data below is for male

of industry standard hose fittings can be fitted, however one must consider whether the fitting geometry allows for PFA lining.

Camlock Hose Adapter										
Camlock Nominal Size		Length	Lined Bore Liner Nominal Thickness Ø B T			Weight				
Inches mm		A	a ש mm	mm	Construction	kg				
1/2 1/2	15	100	15.0	3.0	Stainless/PFA	2.9				
3/4	20	100	15.0	5,2	Stainless/PFA	3.1				
1	25	100	18.0	2.3	Stainless/PFA	3.7				
1½	40	110	27.0	2.5	Stainless/PFA	5.1				
2	50	110	36.0	3.0	Stainless/PFA	6.2				
3	80	110	54.0	4.3	Stainless/PFA	8				

Introduction

Inappropriate or no venting can lead to premature failure of lined piping and therefore cause both unnecessary plant cost and present a safety hazard. CRP has an all-inclusive approach for managing both permeant and non-permeant services and insulated and uninsulated lines. This will provide longevity in service - assisting in preventing liner failure and external steelwork corrosion.

Venting Function

Venting is required in the two key PTFE lined pipe and fittings specifications ASTM F1545 and DIN2874. There are two user reasons for venting:

First, to vent the space between

liner and steelwork of any material (liquid or gas) that may collect behind the liner. Such liquid or gas build up can occur by means of permeation through the liner. Permeation rates can be significantly affected by the choice of which PTFE or PFA to use - CRP would always recommend PFA for pipe fittings and UltraHiPerFlon (UHP) for PTFE lined piping. However, even with such lining systems it is still necessary to guard against the effects of permeation.

Secondly, as an early indicator of failure. In the unlikely event of a liner failure the steel housing is likely to corrode evenly within the pipe and cause a catastrophic and unannounced failure of the complete

pipe. With a venting system, the leaking materials should show at the vent first, providing some opportunity to take the equipment out of service before massive failure.

Basic Vent Hole

CRP as standard provides 5mm vent holes versus the more traditional 3mm (1/8"). These are much more effective, being less likely to get blocked by paint, steel corrosion or the crystallisation of permeant media and therefore prevent catastrophic failure through liner collapse.

Cut steel pipe showing PTFE lined collapse through blocked vent holes

> Corrosion of the vent hole area following permeation and no particular corrosion protection

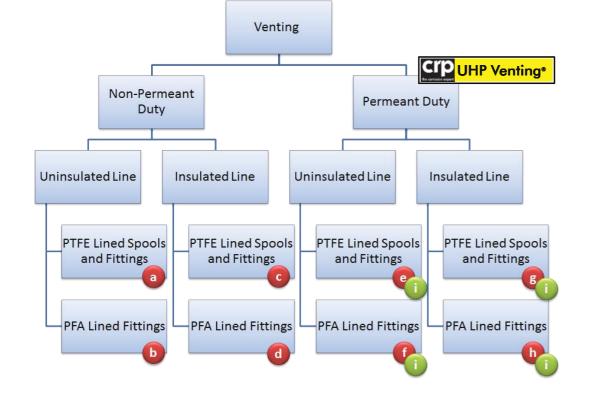
Venting Types

Non-Permeant Duty Uninsulated Line

Selection

The key consideration is whether the duty is for a permeating or non-permeating duty. If the duty is non-permeating then the venting system only needs to provide the leak detection function. However, if it is permeating then it has to be capable of managing the removal of permeant materials from the inside of the item without weakening the steelwork. If not, the steelwork will be weakened to the point of making it unsafe as in the Some variation in the system is then photograph previously.

Once the duty has been determined one


or not. Insulation may be selected for process control reasons - keeping the process cold or hot, or to assist in managing permeation by moving the dew point out of the lining material. Either way whether the line is or is not carrying a permeant media it is necessary to carry the vent to the outside of the insulation such that leakage or permeation is not discharged within the insulation.

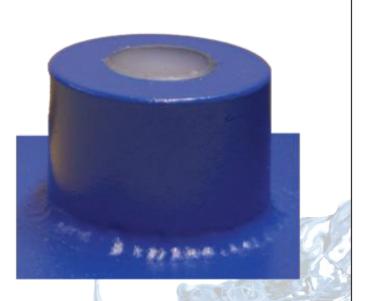
driven by whether the component is PTFE or PFA lined and in the case of pipe spools

needs to decide if the line is to be insulated by their length.

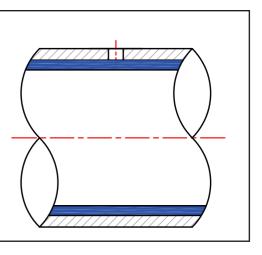
CRP Designation

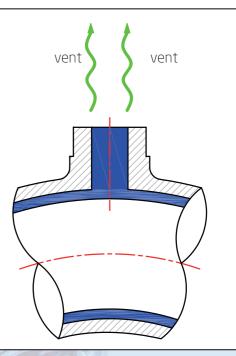
If your requirement is for a non-permeant duty and is uninsulated, then you need not advise specially, we will provide our standard venting automatically (a+b below), If non-permeant, but insulated (c+d below), If permeant, then specify UHP venting - our generic term for for the permeant service venting system, again advising us whether lines are uninsulated (e+f below) or insulated (g+h below). The variable angle vent (i below) can be retrofitted onto any PTFE vent plug.

PTFE Lined Spools and Fittings [a]


single 5mm vent hole located centrally one side enables the spool to be rotated to on the item, whilst pipe spools less than put the venting in the most advantageous 500mm in length also have a single vent position and the location longitudinally hole. Longer spools have two holes on the is chosen to make the routing of vents same side of the spool 150mm from the through insulation jackets easy.

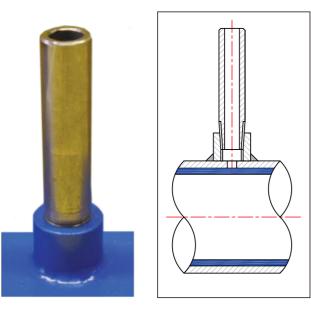
PTFE lined fittings generally have a rear side of the flange face. Venting on




PFA Lined Fittings Vent [b]

The injection port on a PFA fitting works atmosphere around the circumference of as a vent in its own right, with a route to the PFA.

Non-Permeant Duty Insulated Line



Permeant Duty Uninsulated Line

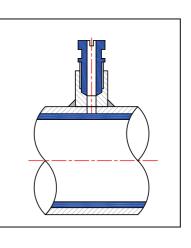
PTFE Lined Pipe Spools and Fittings [c]

is welded over each 5mm vent hole and a carbon steel taper threaded pipe is supplied.

A simple threaded ¼" BSPP half coupling provided to screw into this. The assembled length is 70mm but special lengths can be

PFA Lined Fittings [d]

A steel reducer is fitted to the PFA injection boss of the fitting and a carbon steel 1/4" flat bottomed base to provide a route from BSPT threaded pipe is provided to screw the lining/steel boundary to atmosphere.


into this. The reducer has a cross slot in a

The assembled length is 85mm, but special lengths can be supplied.

PTFE Lined Pipe Spools and Fittings [e]

is welded to the pipe, with a tapered slot for fixing and a drip lip to prevent internal geometry to prevent any dead potentially corrosive liquor vented from space arising in the assembly. Into this is the plug running back along the outside of UHP Venting.

This is designed to accept a 5mm PTFE somewhere more harmless to the plant. tube for carrying any corrosive liquor to

PFA Lined Fittings [f]

The injection port on a PFA lined fitting limited. For those customers requiring works as a vent in its own right, with support for the PFA injection boss a steel a route to atmosphere around the adaptor is fitted to the injection port circumference of the PFA. No other incorporating a flat bottom and cross slot measures are required as permeation in the base. This prevents the vent route through PFA lined fittings is none or very from sealing and avoids dead space within

A purpose made 5mm hole vent boss fitted a PTFE vent plug, with a screwdriver the plug and corroding the vent boss. This system for managing permeation in the following sections (e - i) is referred to as

the fitting. A PTFE vent plug is fitted to this adaptor. This design therefore manages permeation if present, together with providing mechanical support for the PFA injection boss.

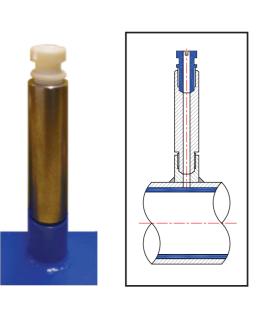
Permeant Duty Insulated Line

Directional Venting

PTFE Lined Pipe Spools and Fittings [g]

A purpose made 5mm hole vent boss is boss. Into this is fitted a PTFE vent plug, welded to the pipe, with a tapered internal with a screwdriver slot for fixing and a drip geometry to prevent any dead space arising lip to prevent potentially corrosive liquor in the assembly. A steel vent extension is vented from the plug running back along

fitted with the same geometry as the vent the outside of the plug and corroding the


vent boss. The assembled length of the steel vent extension is 80mm but special lengths can be supplied.

Crp UHP Venting®

crp

Variable Angle Vent [i]

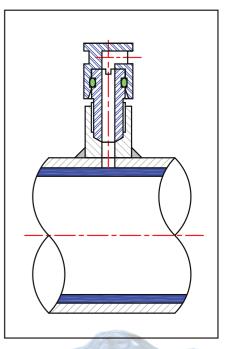
It is not always possible to direct the vents leak when they don't. To resolve these a the vent boss. Again, this is designed on lined piping away from walkways, vent has been developed which simply clips to accept a 5mm PTFE tube for carrying stairwells or open floors. Also vents are onto the top of the PTFE vent plug and can any corrosive liquor to somewhere more often positioned pointing upwards which be directed in any particular direction with harmless to the plant. can allow atmospheric moisture to pool a simple twist. The vent is designed with a in the hole. This can assist corrosion and drip lip to prevent corrosive liquor running cause staff to think they have a process down the side of the plug and corroding

PFA Lined Fittings [h]

A steel adaptor is fitted to the injection port and incorporates a flat bottom and cross slot in the base. The new adaptor has a 5mm hole to prevent blockage. A assembled length of the steel vent

and the new style PTFE vent plug with 5mm hole, drip lip mounted above. The

vent extension with a 5mm hole is fitted extension is 90mm but, special lengths can be supplied.



CTP UHP Venting®

Earthing

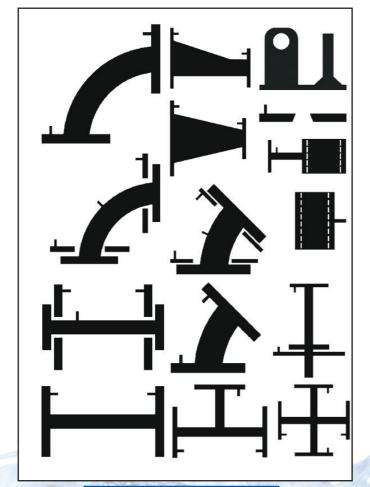
Spikies[®]

It is good practice to ensure electrical continuity and good bonding to earth of all lined piping on site to prevent any build up of static charge or in the case of any electrical equipment failure prevent any metallic components from becoming live and causing an electrical shock to any operator. In particular a static charge can build to several tens of thousands of volts which can spark and ignite flammable atmospheres with catastrophic results.

The generally accepted value of resistance to avoid problems with plant charging is that there should never be more than 10Ω resistance between any point on the plant and ground. One solution to plant earthing is to use earthing studs or lugs.

Earthing Studs and Lugs

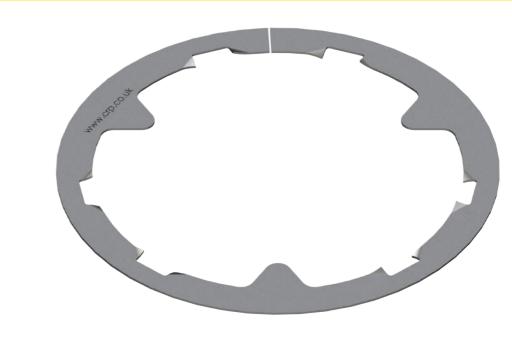
All of the piping products we offer at CRP can be supplied complete with earthing studs - typically M6 x 20mm or earthing lugs generally to the customers own specification


For pipes spools longer than 500mm we would recommend an earthing stud / lug is located at each end of the spool. It commonly accepted that all separate parts of a spool or fitting have a stud / lug welded in place, for example whilst a spool three metres long with one rotating flange might have three studs - one on each flange and one on the pipe close to the rotating flange, a cross with all rotating flanges should have five studs - one on each flange and one on the body.

When installed on site the studs / lugs are joined to the adjacent components using common earth jumping connectors much the same as unlined piping and finally properly bonded to a good plant earth.

Please note that it is important not to confuse plant earthing with static dissipation and the use of staticdissipating piping does not negate the need to earth the piping, indeed it is even more critical as any charge dissipated through the steelwork still needs to find an earth.

Conversely, earthing the piping will not on its own manage static charging within the


piping - please see the section on static dissipating (anti-static) lined piping.

Spikies

Spikies used on rotating flanges and star washers employed on bolted joints can provide good earth continuity without the need for studs, lugs or earthing straps. Please see the relevant page.

Fixed Flanges

Although fixed flanges and star washers may remove the need for spikies or earthing straps, their exclusive use has the disadvantage of the challenges of installing pipe spools with fixed/ fixed flanges which cannot accomodate accumulated misalignment that will occur in installation. Please check local regulations for earthing standards.

In order to address the issue of earthing rotating flanged components CRP has developed its range of Spikies[®].

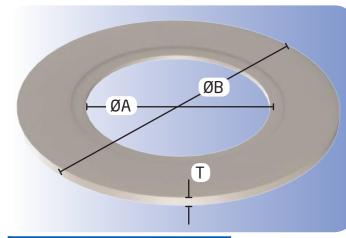
Spikies® are simply slipped into place between the loose flange and stub end on a pipe spool or fitting, and the joint made using star washers and studs as on a fixed flange joint. Once in place the centring lugs ensure that the raised points on the Spikies[®] are positioned to bite into

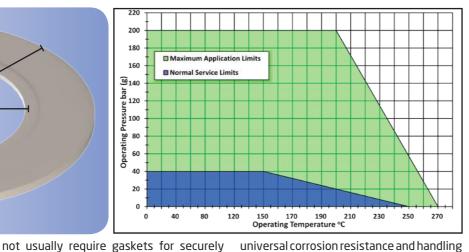
the front of the flange face and the back truly durable fit and forget solution to of the stub end, thus providing earth continuity from rotating flange to fitting / spool.

The extensive design, development and testing programme for Spikies[®] has ensured that the optimum spring steel substrate and nickel corrosion protection coating materials have been used, along with a design that makes Spikies[®] a

Nomina	l Bore	To suit Pipe NB
Inches	mm	NPS ¹
1/2	15	3⁄4
3⁄4	20	74
1	25	1
1.1/4	32	1.1/4
1½	40	1½
2	50	2
3	80	3
4	100	4
6	150	6
8	200	8
10	250	10
12	300	12

1 - NPS is Nominal Pipe Size as per ASME B36.1 and ASME B36.19.


process plant pipework earth continuity issues. The spikie provides a robust and cost effective solution to achieving earth continuity between the pipe body and a rotating flange. It can be supplied factory fitted or can easily be retro-fit in the field.



Fluorogask

Toughgask

and joint types.

Glass Lined

Plastic

8

10

12

200

250

300

a wide temperature, pressure and vacuum

range they have countless applications.

The multi-directional expanded PTFE

improves the mechanical properties

of PTFE making it highly conformable

enabling it to achieve incredible tightness

across a comprehensive range of materials

Typical Joint Materials

GRP/FRP (Please consult)

Glass (Please consult)

PTFE and PFA Lined

Overview

Fluorogask represents the state of the art in gasket technology, a pre-compressed piping gasket produced wholly from multi-directionally expanded PTFE. It is designed for use across the pharmaceutical and chemicals industry combining the corrosion performance and inertness of PTFE with a physical construction that produces an excellent gasket material.

PTFE and PFA lined piping systems do

Performance

The highly conformable material enables it to seal at low torques and makes it ideal for fragile or glass lined flanges. It is even capable of sealing most damaged flange sufaces.

closing their joints. However, there are

exceptions to this rule where joints are

made and broken regularly, where lined

equipment is joined to dissimilar materials

or simply when gasketing has been

Fluorogask fulfills not only the gasketing

needs of a lined piping system, but can also

be used as the gasket of choice across all

piping applications. Capable of meeting all

types of flange standards, having almost

selected as a site wide standard.

Its wide application across piping systems enables a large degree of site standardisation and the comfort of knowing that an incorrect gasket hasn't been fitted.

PTFE is non-ageing, weather and UV resistant and can provide a long service life without the need for retorqueing.

A pre-compressed core to the gasket reduces diffusion, cross-contamination and migration.

Installation

Manufactured to the requirements of ASME B16.21 the gasket fits the inside bolt circle making it easy to centre and clear that there is a gasket present.

The multi-directionally expanded PTFE has exceptional mechanical strength allowing operation with minimal creep at elevated temperatures.

It is dimensionally stable with the gasket size remaining the same when under load.

The pre-compressed core to the gasket increases its rigidity.

Used gaskets can be removed easily and without residue on the flange surfaces.

Food and Pharmaceutical Use

Manufactured according to GMP requirements and being both FDA and EU1935/2004 compliant the gasket can be used in both the food and pharmaceutical industry.

The pre-compressed bore prevents cross-contamination as pores are not present to trap media.

The gasket can withstand both CIP and SIP processes.

80

ØB ØA Т

Toughgask reusable gaskets can be used in nearly all applications to seal metallic flange joints. They are far superior and cost effective compared with other designs such as envelope gaskets as they are reusable many times. They are extremely robust and very easy to install.

The Toughgask gasket offers superior performance than a standard virgin PTFE prevents cold flow of the PTFE which can lead to joint failure.

Due to the use of PTFE with it's universal corrosion resistance the gasket can aid across the plant.

Lined piping systems do not generally

Toughga	ask					
		Thickness	ID	OD		
Nominal	Bore	Т	ØA	ØB	Torque	Weight
Inches	mm	mm	mm	mm	Nm	gm
1/2	15	2.5	21	45	20	7
3∕4	20	2.5	27	57	20	11
1	25	2.5	33	66	20	14
1½	40	2.5	48	85	20	21
2	50	2.5	60	104	27	31
21⁄2	65	2.5	73	123	34	42
3	80	2.5	89	136	34	45
4	100	2.5	114	174	47	73
6	150	2.5	168	222	60	89
8	200	2.5	219	279	68	127
10	250	2.5	273	339	75	171
12	300	2.5	324	409	82	264
14	350	3.0	356	450	95	386
16	400	3.0	406	514	102	506
18	450	3.0	457	549	108	471
20	500	3.0	508	606	115	556
24	600	3.0	610	717	122	723

Metal Dimensions ASME 150 Piping System ID OD Thick ØA ØВ Nominal Bore Inches mm mm mm mm 1∕₂ 15 3.0 21 48 57 3∕4 3.0 27 20 67 1 25 3.0 33 1½ 40 3.0 48 86 50 3.0 60 105 2 21/2 65 3.0 73 124 80 3.0 89 137 З 3.0 114 175 4 100 3.0 168 222 6 150

3.0

3.0

3.0

219 279

340

410

273

324

gasket as its inherent stainless steel core require gaskets to seal between the flange joints; the PTFE / PFA flange faces provide the seal.

This gasket is suitable for unlined systems and is not specifically designed for lined greatly with site standardisation being piping. For gaskets in lined piping service suitable for a varied range of applications please see our Fluorogask literature.

81

Safety Shields Flange Shields

Safety Shields Bellows,Valve & High Temperature Shields

Introduction

Safety Shields are designed to minimise the impact of a leak or spray out from a piping system joint through pressure dissipation. In the case of a small leak the temporary containment they give can provide valuable time to enable detection of the leak and shut down the system before it becomes more serious. In the case of a catastrophic failure causing spray out, the safety shield serves to reduce the effect of the system line pressure and route the leak along the pipe rather than directly at you or your colleagues.

Safety Shields can therefore act as a key part of a risk reduction programme for use with equipment conveying hazardous materials, be they chemicals, high temperature fluids or flammable products.

They can assist in achieving the safety requirement of the Pressure Equipment Directive.

Their application can be plant wide if there is a high level of risk across a site, or specific to lines handling dangerous substances or lines in potentially hazardous locations such as above or alongside walkways.

Flange Shields

Flange shields are available as standard for ASME and DIN flanges for all popular nominal bores and can be manufactured for sizes up to 40 inches (DN 1000).

The most universal and popular product comprises two layers of woven PTFE coated fibreglass cloth for the side pieces and a high temperature FEP viewing window. The draw cords and sewing threads are manufactured from Nomex[®] the flame resistant meta-aramid. The viewing strip enables complete visual inspection and the product is fire, tear and UV resistant with a continuous operating temperature of 200°C, and near universal chemical resistance.

A product option is to have a PTFE drain attached. This can route any leak to site containment using PTFE tubing as a push fit. This is popular in high traffic areas or where sensitive electronic equipment is in the vicinity. Alternatively it can act as a drain for leaks, a vent for rainwater or moisture or as an emissions test port. It is also possible to fit pH indicator paper to indicate the presence of acids or alkalis.

Flange Shield

Flange Shield with PTFE Drain

Bellows Shields

The shield style for bellows is a double layer PTFE coated woven fibreglass cloth, with a clear high temperature FEP viewing window. The special FEP provides nearly universal chemical and UV light resistance and a 200°C upper performance. As standard these are available for 2-5 convolution bellows with ASME or DIN flanges in all nominal bores up to 40 inches (DN 1000).

As non-metallic bellows generally only have a single layer of PTFE or rubber between the media and the outside world and as by definition they are subject to flexible movement throughout their lives, we strongly recommend safety shields on bellows applications. These shields are suitable for PTFE, rubber and metallic bellows and are of course designed to function with the range of movements expected in the bellows.

Valve Shields

As a universal choice for valve shields we recommend the PTFE woven glass cloth shield with a clear high temperature FEP viewing window. Valve shields are available for all types of valve including ball, check, butterfly, gate, plug, diaphragm, control and globe with bonnet shields available for gate and globe valves to enable operation. Shields are also available for covering instrumentation, actuators and electronics to protect them from local atmospheric conditions. Because valve dimensions vary from manufacturer to manufacturer even on the same style of valve it is necessary to provide information on the specific valve types.

High Temperature and Pressure Flange Shields

For $1100^{\circ}C$ and 200 Bar performance there is a 316 stainless steel shield available.

The stainless steel band securely clamps around the flange (different widths are available). A layer of stainless steel netting around the inside diameter of the shield dissipates any pressurised spray by directing it around the flange circumference. This shield is again designed for fitting without tools, has smooth corners to avoid sharp edges and is designed for the flange bolting to remain visible when fitted.

3 Convolution Bellows Shield

PTFE coated Valve Shield for a Ball Valve

Stainless Steel High Temperature and Pressure Flange Shield

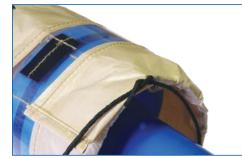
Safety Shields Construction

Safety Shields Flange Protection Tape

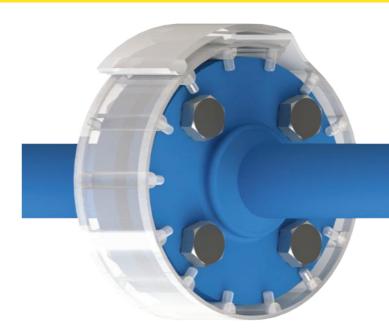
Construction

All of the fabric shields come with Velcro fastenings securely sewn onto the shield fabric. This enables one person to wrap the shield around the flange connection time. Well retained drawcords give an easy means of closing the shield. Once wrapped around the components the safety shield can be securely tied using the drawcords and a simple reef knot

and complete the fastening in a short enabling installation by one person in less than a minute.



Cross the right over left


Then under

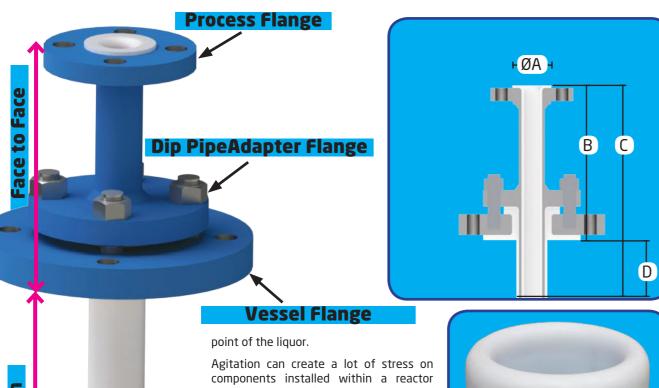
Cross the left over right Then under Pull ends to tighten

personnel from uncontrolled spray out from a failing flange joint. They should always be considered when installing any piping system carrying toxic or corrosive chemicals. By controlling the leak and protecting personnel and surrounding plant from chemical contact they can save both money and can be a key part of any risk mitigation for personnel.

Flange protection tape is used to protect it ideal as a maintenance stores item, each width covering a range of flange to flange sizes. The correct length is simply cut from the roll, wrapped around the flange joint and secured with a small stainless - or smaller lengths if required there are steel self-tapping screw.

The basic function is one of deflecting the spray out from the joint, significantly reducing the chance of a pressurised spray hitting personnel. The spray shield The flange tape is supplied in a roll, making is suitable for piping at temperatures

	Flange	Protec	tion Tape				
			Required		Тар	e Width	Weight
	Nomina	al Bore	Length	F/F	F/R	R/R	Per Metre
	Inches	mm	mm	mm	mm	mm	gm
	1/2	15	360	50	50	70	70
	3∕4	20	390	50	50	70	70
	1	25	400	50	50	70	70
	1½	40	460	50	70	70	70
ĺ	2	50	540	50	70	100	100
ĺ	3	80	660	70	70	100	100
	4	100	780	70	100	100	100
	6	150	940	70	100	100	100
	8	200	1140	70	100	140	140
ĺ	10	250	1340	70	100	140	140
ĺ	12	300	1580	100	100	140	140
	14	350	1740	100	140	140	140
	16	400	1940	100	140	140	140
	18	450	2060	100	140	140	140
9	20	500	2260	100	140	180	180
	24	600	2620	140	140	180	180



from -40° to 110°C and manufactured in polypropylene it will withstand a broad range of exposure to chemical environments. Available in 50 metre rolls five widths in the range, but three of the sizes cover the bulk of sizes. Of course this is not just a lined piping product and can be used successfully with many piping materials involving flanged joints.

85

Continuously Lined Dip Pipe (CLDP)

Continuously Lined Dip Pipe (CLDP)

Dip pipes have a wide array of uses. Typically they are used to charge a reactor below the liquid level, to extract samples from the reactor as part of one of our sampling systems, or to extract liquid from a vessel without the need of a side or bottom outlet.

Lengt

rsion

CRP dip pipes are manufactured from a carbon steel fabricated construction with a continuously lined paste extrusion PTFE liner referred to as an CLDP. One piece of PTFE liner covers and protects both the inside and outside of the dip pipe. Our advanced manufacturing techniques enable us to produce a dip without any pinched or welded ends eliminating a potential source of failure.

Dip pipes can be supplied straight or curved to precisely position the discharge vessel. Mindful of this CRP thoroughly checks that the mechanical strength of the dip pipe will be sufficient in the process conditions.

CRP's range of dip pipes are constructed of the following components:

Pipe

A pipe, typically Schedule 40 carbon steel pipe without welds, other than to attach the flanges.

Process Flange

A process flange, welded onto the end of the pipe, allowing it to be connected to the process outside of the vessel.

Vessel Flange

The vessel "flange". This flange is attached part way along the dip pipe to allow it to be connected onto a port in the top of the vessel. With a CLDP it is usually necessary to make the vessel flange from two parts.

(i) a flange welded to the dip pipe itself and shows as welded above

(ii) an adapter flange, bolted to the flange on the dip pipe.

Adapter Flange

This adapter flange is much the same as a reducing flange, except that its bore is larger than on an equivalent reducing flange, since it has to allow the lined dip pipe through it rather than be the same as the lined bore of the smaller nominal bore size of the reducing flange. Also, they are parallel bore - a tapered bore would

be of no benefit. The reason for needing an adapter flange is simply because it is impossible to flare the PTFE on the dip pipe out to the raised face diameter of the vessel nozzle.

Liner

The liner - a single piece of PTFE covering all of the wetted surfaces of the dip pipe itself. The PTFE is manipulated to bend it back on itself to allow this to be done. The main advantage is that there are no welds in the PTFE to act as a weak point in the construction. Please note that the adapter flange is usually PFA moulded.

General Design

Dip pipes are available in the size range 1" - 6" nominal bore.

They are rated from -29°C to +200°C at full ASME150 line pressure (i.e. same range as for spools).

All dip pipes are full vacuum rated. For 3", 4" and 6" nominal bore an inner vacuum liner is fitted to ensure that the liner doesn't collapse under vacuum at high temperature. We can supply vacuum liners for the smaller dip pipes too, although

they are not necessary.

Dip pipes have a single vent hole in the steel pipe, typically equispaced between the vessel and process flanges.

We can offer dip pipes made of stainless steel, and also manufactured from Schedule 80 pipe.

Typically the face-to-face length of a dip pipe is 150mm, although we can make this longer and also somewhat shorter.

The process flange can be fixed (usual) or rotating.

The maximum total length of dip pipe that

Ìр	Pi	ре	

Dip Pipe								Constr	ruction Codes	
						r		Code	Steelwork	Lining
								CP	Cast Steel Cast Steel	PFA PTFE
			Maximum	Process				CT FP	Cast Steel Fabricated Steel	PTFE
		Process	Vessel	Flange	Face to	Maximum	Maximum	FT	Fabricated Steel	
		Flanges	Flange	Raised	Face	Total	Immersion			
		Size	Size	Face	Standard	Length	Length			
Nomina	l Bore			ØΑ	В	С	D			
Inches	mm	inch	inch	mm	mm	mm	mm	C	onstruct	tion
3⁄4	20	3⁄4	24	43	150	1000	850			FT
1	25	1	24	51	150	3000	2850			FT
1½	40	1½	24	73	150	3000	2850			FT
2	50	2	24	92	150	3000	2850			FT
3	80	3	24	127	150	3000	2850			FT
4	100	4	24	157	150	3000	2650			FT
6	150	6	24	216	150	2000	1850			FT

can be manufacture is about 3000mm.

For lined vessels, the vessel flange usually needs to be two sizes larger than the nominal bore of the dip pipe, although sometimes a dip pipe will fit down a nozzle only one size larger than the dip pipe. (Typically a nozzle is made of Schedule 40 pipe, with approximatly 4mm per side of glass lining. CRP dip pipes are made of Schedule 40 pipe with 3mm per side (approximately) of lining up the outside, and with something of a bull nose at the tip. Usually a one pipe size difference between nozzle and dip pipe is insufficient to cope with these two layers of linings).

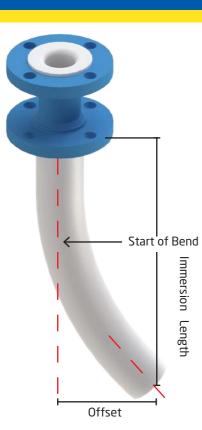
4" or 6" NB), but the curve has to be very gentle (500mm minimum bend radius), and not with a long straight before the start of the curve.

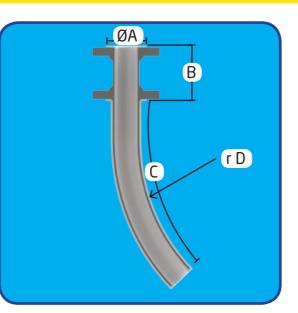
Screwed and pinned construction solid PTFE dip legs are available, enabling the production of a sharp bend or if a spray ball is required.

CRP has stress calculation model for straight dip pipes in agitated vessels.

To assist in determining a specification for a particular dip pipe a questionnaire is available to download from our website.

Curved dip pipes can be produced (not in


Anti-syphon System


To prevent liquor being drawn up the dip pipe we can supply anti-siphon systems to vent the dip pipe safely within the reactor and create an air break. An instrument tee is fitted on the top of the process flange and connected to another via a PTFE hose or hard piping to another below the vessel flange and having access to the vessel interior. Under any condition inducing suction gases are drawn from within the vessel rather than the contents being syphoned out.

Curved CLDP

Dip Leg

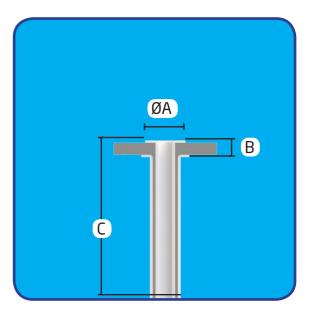
Curved dip pipes have a variety of uses. the vessel. Where vessels have multiple They can be used to introduce liquor into a vessel directing it to the side of the vessel wall to lessen the gas bubbles created if directed directly onto the liquid level surface reducing the froth that may be created encouraging a gentler introduction of the media into the vessel. They can also be used to position the discharge close to an agitator blade to provide a very effective mixing of the liquid into

dip pipes the dip pipe discharges can be positioned to direct flow away from each other to mix effectively with the vessel contents.

As we are lining curved dip pipes with straight liners we are not able to produce dip pipes with tight radii, we need a gradual curve so that we do not cause deformations and ripples on the inside

of the bend. Also consideration has to be taken that that the curved dip pipe will actually fit through the nozzle of the vessel. If the vessel nozzle is not much larger diameter than the dip pipe then the curve will prevent this being inserted through, here again a gradual curve helps in these situations. Please consult us to determine what can be achieved.

Curved	Dip Pipe							
Nominal	l Bore	Process Flange Size	Maximum Vessel Flange Size	Process Flange Raised Face Ø A	Face to Face Standard B	Maximum Curve Length C	Minimum Bend Radius r D	
Inches	mm	inch	inch	mm	mm	mm	mm	Construction
3∕4	20	3⁄4	24	43	150	950	500	FT
1	25	1	24	51	150	2900	500	FT
1½	40	1½	24	73	150	2900	500	FT
2	50	2	24	92	150	2900	500	FT
3	80	3	24	127	150	2900	500	FT
4	100	4	24	157	150	2900	500	FT
6	150	50 6 24 2		216	150	1900	800	FT

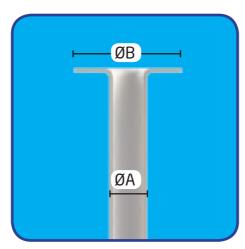


upstand, this does allow some space bore to allow the lined dip leg to pass saving around a reactor head, If bolting through. Dip legs can also be bolted to a reactor vessel flange they typically directly to a pipe discharge straight into will have an adaptor flange too as the a tank or vessel without the need for

A dip leg is simply a dip pipe without an connection needs to have a large enough support from a vessel lid etc.

Dip Le	g				
		Raised Face	Face to Face Standard	Maximum Length	
NB		ØА	В	C	
Inches	mm	mm	mm	mm	
3⁄4	20	43	17	1000	
1	25	51	20	3000	
1½	40	73	24	3000	
2	50	92	25	3000	
3	80	127	30	3000	
4	100	157	29	3000	
6	150	216	34	2000	

Code	Steelwork	Lining
CP	Cast Steel	PFA
CT	Cast Steel	PTFE
FP	Fabricated Steel	PFA
FT	Fabricated Steel	PTFE
or	nstructio	on
	f	T
	f	T
	f	-T
	f	T
	f	T
	f	T
	f	T



Entry Pipe

Lined Equipment Basics

Where there is little need for mechanical strength offered by CRPs lined steel dip pipes, CRP's Entry pipes can be an ideal low cost solution to introduce liquor into a storage vessel etc.. They are manufactured from paste extruded PTFE flared one end to raised face dimensions to connect between suitable mating flanges. They can be supplied in any length up to 6000mm long and generally available in sizes from

1" to 6"NB. Entry pipes are often used to protect the bores of glass lined vessels from mechanical damage, being a sacrificial sleeve. We can supply custom sized liners to ensure correct fit in existing nozzles etc.

Entry F	Pipe				
		Pipe OD	Raised Face	Maximum	
NB		ØA	ØВ	Length	
inches	mm	mm	mm	mm	Material
1/2	15	16	35	6000	PTFE
3⁄4	20	21	43	6000	PTFE
1	25	27	51	6000	PTFE
1½	40	41	73	6000	PTFE
2	50	53	92	6000	PTFE
3	80	78	127	6000	PTFE
4	100	102	157	6000	PTFE
6	150	154	216	6000	PTFE
8	200	203	270	3000	PTFE
10	250	254	324	3000	PTFE
12	300	303	381	3000	PTFE
14	350	333	413	3000	PTFE
16	400	381	470	500	PTFE
18	450	429	533 500		PTFE
20	500	478	584	500	PTFE
24	600	575	692	500	PTFE

A Guide For Those New to Lined Piping

Lined piping is a term generally associated with PTFE and PFA piping systems in which a lining is either fitted or moulded into a metal housing. It should not be confused with line pipe - a term used for steel piping to be used in pipelines and one should also be aware that lined pipe can have other plastic materials acting as the lining.

Lined piping comprises an assembly of individual components, generally connected by bolting flanges together in the field. This is because unlike all metal or plastic systems, the technologies and materials involved does not allow it to be site manufactured. This is not universally true as there are some components designed specifically for field fabrication, but these are used for local convenience and it would be unusual to build a plant from these products.

Each individual component comprises an outer housing - usually of carbon or stainless steel. The purpose of this is to provide the mechanical strength element of the piping system and give a means of connection of adjacent components. It is fair to say that these elements in following international design standards created for standalone steel systems are significantly overspecified in terms of pressure, temperature and vacuum capability. There is no disadvantage in this, however, one does not need to focus on aspects of steelwork integrity such as weld porosity which are not relevant in a lined system. It is much more important to consider the lining itself and therefore obtain an understanding of these materials and processes.

Lining

Components are then lined in either paste extruded PTFE or PFA. PTFE is generally used for straight lengths of piping (pipe spools) and PFA for pipe fittings elbows, tees, etcetera. PFA has all of the performance characteristics of PTFE and some more and is suitable for the more complex fittings components, which have branches or require great dimensional precision. Some fittings are lined in paste extruded PTFE where their geometry is simple, especially when Static-Dissipating materials are selected and commercial considerations enable the use of Static-Dissipating PTFE over Static-Dissipating

Finishing

PFA.

The final element is the external finish, which can be a simple primer/finish coat capable of providing some durability in more benign environments, through to high build multi-coat paint systems for the most corrosive environments in coastal chemical plants.

Configuration

The essential design aspect of lined piping is that the straight spools provide the variable element as it is relatively easy to manufacture these at different lengths, whilst the fittings are manufactured to standard dimensions, which all remain the same within a bore size. This allows interchangeability without complete system redesign and provides the easiest and cheapest way of applying a product that has a complex manufacturing cycle and is unsuited to site running. Changes of direction are most cost-effectively accommodated by having rotating flanges on the pipe spools and fixed flanges on fittings.

Fluoropolymers

Fluoropolymers are ideal for bulk chemical, agro-chemical, fine and speciality chemical, pharmaceutical and biopharmaceutical processing equipment because they have excellent chemical and thermal resistance. Their molecules have continuous nonreactive surfaces and are compatible with virtually all chemicals and solvents. They are far more resistant to chemical attack than conventional chlorinated and hydrocarbon polymers, and have far higher service temperatures.

There are a number of materials in the Fluoropolymer family. PTFE (Polytetrafluoroethylene) is the original Fluoropolymer, discovered by DuPont in 1938. From this original development there have been a number of other materials developed - trying to improve on the difficult processing characteristics of PTFE. These have been more or less successful, having to trade properties of PTFE in order to attain other characteristics. The principal materials

used in the industries that we serve are:

-	PTFE
-	PFA
-	FEP
-	PVDF
-	ETFE

PTFE

PTFE is not melt-processable and therefore usually needs to be formed into the required shape prior to sintering.

PTFE comprises both carbon and fluorine atoms, as a straight chain molecule, the carbon backbone being protected by a helix of the fluorine atoms wrapped around it. This carbon fluorine bond is one of the strongest chemical bonds and gives the material its properties of corrosion resistance and non-stick.

Key Properties of PTFE

Chemically Inert

PTFE resists the most aggressive organic and inorganic chemicals and solvents over a broad temperature range. This includes:

Strong mineral acids Inorganic bases -Inorganic oxidising agents Salt solutions Aldehydes _ Chlorocarbons **Organic Acids** Anhydrides Aromatics Alcohols Ketones Esters Fluorocarbons and Others

Electrical Properties

The ability to resist an electrical charge is measured by surface and volume resistivity. In the case of PTFE these figures are colossal. Depending upon how the test work is performed, values in excess of 10¹⁷Ωcm are considered minimum. In the case of equipment lined for the chemical and pharmaceutical industry this property can be a nuisance as PTFE lined equipment may build up electrostatic charges and be unable

Lined Equipment Basics

Pressure & Temperature

to dissipate them. This is considered highest resistance to permeation and the elsewhere in relation to static-dissipating materials.

Low Friction

PTFE has a very low coefficient of friction and for all calculation purposes it can be considered hydraulically smooth,

Thermal Stability

PTFE retains useful properties (i.e. not more than 15% loss of chemical resistance) at up to 200°C and sometimes beyond depending upon the application. In fact it has the highest retention of its chemical properties of any known plastic like material. (Please be wary of materials performance data stating that PTFE has an upper service limit of 260°C. This is true in a laboratory situation, but in service most material properties such as mechanical strength will have been lost preventing it from performing a useful duty.)

PTFE Paste Extrusion

CRP uses the most expensive grades of PTFE to produce the uniquely manufactured HiPerFlon. These are coagulated dispersions, often referred to as fine powders. These have a very close process control of grain size range and are uniquely capable of being sheared by lubricated paste extrusion into a coherent fibrous matrix with useful structural integrity. Pipe liners for the chemical and pharmaceutical industry are almost universally manufactured from HiPerFlon. The paste extrusion process provides the highest level of surface finish, the

closest dimensional control of all of the methods of lining in PTFE. This serves to differentiate what we manufacture from processing technologies using lower quality and priced materials - being ram extrusion, mandrel wrapping and isostatic moulding.

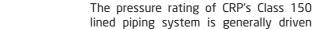
Paste extrusion however is only suitable for making straight lengths of PTFE tubing colloquially known as pipe liners in our industry. It can be subsequently manipulated into bends and other simple forms, but is not capable of lining complex shapes without joints.

PFA

FEP

PFA (Perfluoroalkoxy) was developed in order to achieve a true melt-processable fluoropolymer. Its characteristics are such that in service it can be considered as interchangeable with PTFE in terms of its chemical service and temperature and pressure duty. It has the highest permeation resistance of the fluoropolymers, exceeding that even of paste extruded PTFE. It also provides the smoothest and least wettable finish of all of the Fluoropolymers. Unfortunately the trade-off is cost, the material being more expensive than PTFE. CRP uses PFA in the production of most of its lined fittings and the Flowserve range of Atomac and Durco valves are available lined in PFA.

Standard FEP (Fluorinated Ethylene Propylene) is another melt-processable Fluoropolymer. It does not have the


almost universal chemical resistance of PTFE and PFA and its maximum operating temperature in service is 150°C. CRP uses the material occasionally for the manufacture of "sheet lined products". This is essentially a lining made up of sheet and tube elements of FEP welded together in situ. Sheet lining allows one to line complex articles without the use of expensive moulding tools, to cope with the inevitable tolerance errors of welded fabricated steelwork and with the use of bonded linings to provide a degree of vacuum performance. Where the chemical performance and temperature duty are not an issue, the material provides a less expensive alternative to PFA, however it is not used in lined pipe and fittings.

PVDF

PVDF (Polyvinylidene difluoride) is an engineering fluoropolymer and has a more limited range of chemicals performance and an upper temperature limit of 120°C. It has been replaced in many applications by the improved performance of PTFE resins and is not well supported in the market.

Materials Suppliers

It is worth stating that CRP only use fluoropolymers from well respected global producers. This provides confidence in the raw materials in terms of their standards, both quality and consistency of materials and product traceability.

Pressure

lined piping system is generally driven by the pressure rating of the flanges used. These pressure ratings are detailed in the US standard ASME B16.5, and specifically Class 150 flanges. Within this standard, the pressure rating of flanges is also dependent upon the material of construction, and the operating temperature. Typically, at ambient temperature, the pressure rating of a carbon steel flange is 19.6 bar(g), with stainless steel flanges having a slightly lower pressure rating, the exact values depending upon the grade used. In all cases the pressure rating of flanges also reduces with increasing temperature. Please refer to the pressure temperature

curves below for more detail.

ASME B16.5 Class 300

In reality many chemical processes are much more benign running at only a few bars of pressure. However, if a higher rated pressure system is required, CRP can offer a Class 300 flanged piping system, although the pressure rating in this case is driven by the joint integrity of the PTFE to PTFE flare faces between the flanges, rather than the pressure rating of the flanges themselves. Please consult CRP for more details.

Exceptions

There are three exceptions to this general rule:

Blanking Spades

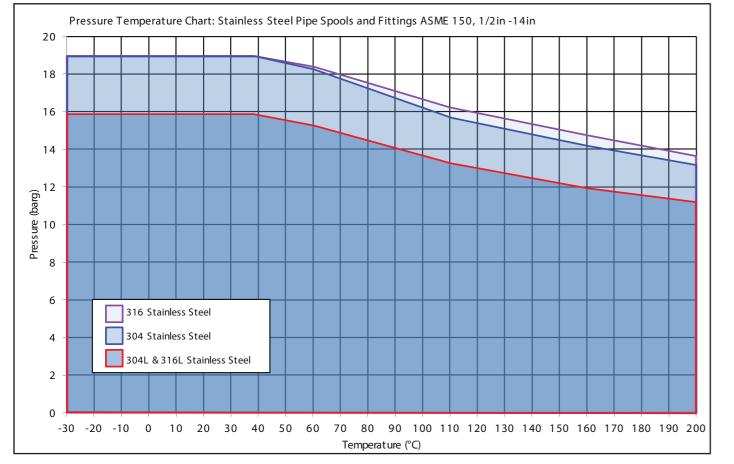
to the necessity to keep the spade

Here the pressure rating is limited due

thin enough to be fitted between two flanges. Particularly at larger sizes, this significantly limits the allowable pressure.

Solid PTFE Sliding Blinds

Here the pressure rating is limited by the fact that the strength of these components comes only from PTFE, there is no steel to provide mechanical strength. Once again, particularly at larger sizes, this imposes significant limits on the pressure rating of these components.


Hose Adapters

In this case the pressure rating is driven by the pressure rating of the hose connection end of the component, which is usually lower than the flange pressure rating.

Pressure & Temperature

Vacuum & Temperature

Temperature

Lower Temperature Limit

For CRP's standard range of carbon steel lined piping, the lower temperature limit is set by the lower operating temperature of the steel housings, -30°C, as detailed in ASME B31.3. PTFE and PFA are both capable of operating down to cryogenic temperatures, and therefore, if operating temperatures below -30°C are required, CRP can offer lined piping systems manufactured using either low temperature carbon steel housings or, more commonly, using stainless steel

housings, which are typically rated to -195°C.

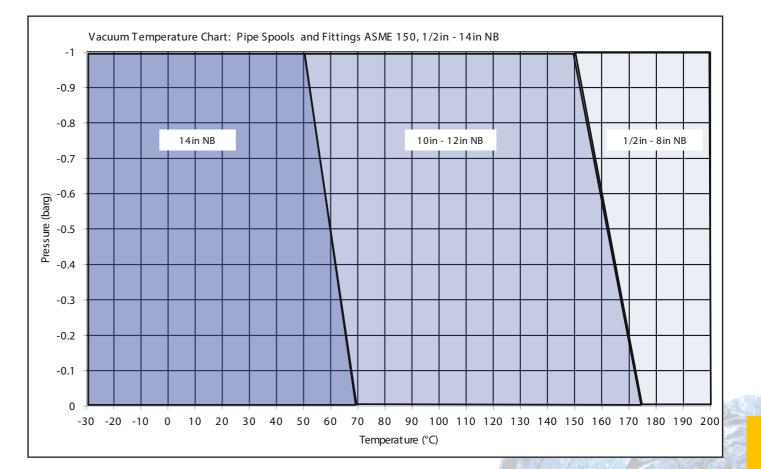
Upper Temperature Limit

This is determined by the mechanical strength of the PTFE/PFA linings used by CRP. While in laboratory conditions, PTFE and PFA retain excellent corrosion resistant properties up to 260°C, as with all polymers, their mechanical properties reduce with increasing temperature, and their thermal expansion rates far exceed those of steel. The consequence of these two factors is that at temperatures over 200°C, the integrity of the joints between individual lined items becomes questionable, as does their vacuum performance.

When specifying a lined piping system,

consideration should also be given to any situations of thermal shock, and the potential for upset conditions (both pressure and temperature).

Vacuum


Vacuum is the most often ignored aspect of lined piping systems and consequently one of the more common causes of failure.

The vacuum performance of a lined piping system is unrelated to the positive pressure rating of the system. Rather it is driven by a combination of: the liner thickness; the degree of interference between the liner and the steel housing; whether the liner is mechanically keyed onto the housing;

and operating temperature. In essence, additional support for the liner and thus thicker liners provide more hoop strength to the liner and so resist vacuum better.

Secondly, liners that are tight in the bore of the housing have a higher vacuum performance than loose liners. This is because, for a tight liner, the steel housing helps prevent the liner from deforming and collapsing under vacuum.

Thirdly, if a liner is mechanically keyed onto the steel housing (only possible for PFA lined components), this provides

improved vacuum performance.

Fourthly, at higher temperatures, liners have less mechanical strength, and thus a reduced vacuum performance.

By adjusting each of the above factors, CRP's range of lined pipe have the vacuum performance detailed elsewhere in this catalogue.

Product Materials of Construction

PTFE and PFA Material Properties

										Ca	arbo	on S	Ste	el					St	tair	les	ss 2	Ste	el		
				ι	ine	2r				Fa	brio	cati	ion			Cast			F	abr	ica	tio	n			Cast
	Specification ↓	ACTEM DADOF T	ASIM U4895 Iypel	ASI M D4895 Type I + Carbon	ASTM D4894	ASTM D4834 + Carbon	ASTM D3307 Type II + Carbon	API 5L Grade B/ASTM A106 Grade B	ASTM A105	ASTM A516 Grade 60	Free machining Carbon Steel	Free machining Carbon Steel	ASTM A516 Grade 60	ASTM A234 Grade WPB	ASTM A516 Grade 60/ ASTM A105		ASTM A312 Grades: 304/304L/316/316L	ASTM A182 Grades:F304/F304L/F316/F316L	ASTM A240 Grades: 304L/316L	ASTM A276 Grades: 304L/316L	ASTM A276 Grades: 304L/316L	ASTM A312 Grades: 304/304L/316/316L	ASTM A403 Grades: 304L/316L	ASTM A240 Grades: 304/304L/316/316L	ASTM A240 Grade 304	ASTM A351 Grade CF8/CF8M
Product	ltem ↓			Static-disspating PTFE	Virgin PTFE	Virgin DEA	Static-dissipating PFA	Pipe	Flange	Stub End	Vent Boss	Vent Extension ⁵	Body	Wrought Fitting	Profile	Casting	Pipe	Flange	Stub End	Vent Boss	Vent Extension ⁵	Body	Wrought Fitting	Profile	Reinforcement	Casting
Pipe Spool Van Stone		-	4		\square			\checkmark	\checkmark		✓ ✓	✓ ✓					✓ ✓	✓ √		✓ ✓	✓ ✓					F
Welded Construction Fixed/Rotating Pipe Spool Welded Construction Fixed/Fixed Pipe Spool		- ,	7		+	+	+	v √	IV I√	v √	\checkmark	✓ ✓			\vdash	-	✓ √	✓ √	v √	✓ √	✓ √		\square	\vdash		⊢
Field Flare		=																								
Spacer Type 1 Spacer Type 2		- ,		1	//,	4	+	┝	-										_			./				⊢
Spacer Type 3		. ,		/	╈	+	+	\checkmark		\checkmark		\vdash	v		\square		\checkmark		\checkmark			v	\square	\vdash	\vdash	⊢
90° Elbow		2	•	/		V						\checkmark				\checkmark					\checkmark					~
90° Elbow		- ,	4		_	_	_	\checkmark	√	√ 4	\checkmark	\checkmark		✓			√	✓	√ 4	√	✓		√			L
90° Elbow 3D		- \	4			+	_	\checkmark	\bigvee	✓ 4	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	√ 4	✓ ✓	✓ ✓		\checkmark			L
90° Elbow 5D 45° Elbow		-	$\frac{1}{2}$		+	+	+	√	↓	✓ 4	✓	✓ ✓					✓	✓	✓ 4	✓	✓ √					
45° Elbow) - ,	7		+	+	+	1	1	14	1	V V			\vdash	•	1	1	14	1	▼ √					ř
Equal Tee		2			+	~		<u> </u>		•		\checkmark				\checkmark	•	•	•	•	• •					V
Equal Tee		=	╈	╈	+	v	_	\checkmark	\checkmark	√4	\checkmark	\checkmark			H		\checkmark	\checkmark	√4	\checkmark	\checkmark					F
Reducing Tee		2				v	1					\checkmark				\checkmark					\checkmark					\checkmark
Reducing Tee		=			Ì	V	∕ √	\checkmark	√	√4	\checkmark	\checkmark					\checkmark	\checkmark	√4	\checkmark	\checkmark					
Short Stack Tee		2				V						\checkmark				\checkmark										
Short Stack Tee		=			-			\checkmark	\checkmark		\checkmark	\checkmark					\checkmark	\checkmark		\checkmark	\checkmark					
Strainer Tee			+	~	∕1 ✔	_	$\mathbf{\nabla}$	_	<u> </u>		\checkmark	\checkmark				 ✓ 			_	\checkmark	\checkmark					\checkmark
Equal Lateral Tee Equal Lateral Tee		2	+	+	+	v		\checkmark	√		\checkmark	\checkmark				~	\checkmark	\checkmark	_	\checkmark	✓					-
Reducing Lateral Tee		2	+	+	+	v	_	ľ		-	×	v √				\checkmark	v	Y		•	v					⊢
Reducing Lateral Tee		-	╈	+	+		_	\checkmark	\checkmark		\checkmark	\checkmark				-	\checkmark	\checkmark		\checkmark	\checkmark					⊢
Instrument Tee			╈	╈	+	~						\checkmark				\checkmark					\checkmark					~
Instrument Tee		=				V	∕ √	\checkmark	\checkmark	√ 4		\checkmark	\checkmark				\checkmark	\checkmark	√4		\checkmark	\checkmark				
Double Branch Instrument Tee		=				V		\checkmark	\checkmark	√ 4		\checkmark	\checkmark				\checkmark	\checkmark	√ 4		\checkmark	\checkmark				
Equal Cross		2	+	+	_	~	_					\checkmark				\checkmark			(1)							L
Equal Cross Reducing Cross			+	+	+	~		$\overline{\checkmark}$	\checkmark	$\sqrt{4}$	✓ ✓	✓ ✓			\square		✓ ✓	\checkmark	√4 √4		✓ ✓		\square	\vdash	\vdash	\vdash
Short Stack Cross		-	+	+	+		_	$\overline{\checkmark}$	IV I√		* √	▼ √		\vdash	Н	\square	▼ √	▼ √	•	▼ √	▼ √	\square	\vdash	\vdash	\vdash	\vdash
Concentric Reducer			12 v	12	+	~	_	-	-	-		\checkmark			\vdash	\checkmark					√	\square	\vdash	\vdash		V
Concentric Reducer			_	/		_	³ √	• ✓	\checkmark	√4	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	√ 4	\checkmark	✓		\checkmark			
Reducing Flange Taper Bore		- 🗸	/2	12		~	_					\checkmark			\checkmark						\checkmark			\checkmark		Γ
Reducing Flange Parallel Bore		_	_	/		-	(3 √	3				√			\checkmark						\checkmark			\checkmark		Ĺ
Eccentric Reducer		-	(2)		+	~						\checkmark			Ц	\checkmark			1.							\vdash
Eccentric Reducer		- ,				~	³ √ ³	8 ✓	\checkmark	√ 4	√	\checkmark	\vdash		Н	\square	✓	✓ √	√ 4	\checkmark	\checkmark		\checkmark	\vdash		\vdash
Blank Flange Blanking Spade	<u> </u>	-+		_		+	+	\vdash	~	-		\vdash			\vdash			✓	_				\vdash	\checkmark	-	⊢
Orifice Plate				_	_	∕ √	⁵ √ ¹		\vdash	\vdash				\vdash	√5	\square		\square					\vdash	✓ √5	\vdash	\vdash
Sliding Blind		-	╉		7		1									\dashv	\square	\vdash		\square	\square	\square	\vdash			F
Spectacle Blind		_	1	1	1	∕ √	⁵ √	5		5					\checkmark									\checkmark		
Toughgask		T	T	1	1				100																\checkmark	Γ

 [ASTM D4895 Type I] (Grades A or B) Static Dissipating PTFE (paste extruded) [ASTM D4895 Type I] (Grades A or B) Virgin UHP PTFE (paste extruded) [ASTM D4895 Type I] (Grades A or B) Virgin PFA Virgin PFA Static Dissipating PFA 	< <	Units	
			Mechanical
20.7 20.7 20.7 26.2 26.2	20.7	MPa	Minimum Tensile Strength
250 250 250 300 300	250	%	Minimum Elongation at Break
55-60 55-60 55-61 55 55	55-60	Shore D	Hardness
			Physical
5-2.19 2.16-2.19 2.16-2.19 2,12-2,17 2,12-2,17	2.16-2.19		Specific Gravity
n/a n/a n/a 2 1.8-2.5	n/a	g/10 min	Melt Flow Rate when tested to ASTM D3307 at 372°C
White Black White Translucent Black	White		Liner Colour
< 0.01 < 0.01 < 0.02 < 0.03 < 0.03	< 0.01	%	Water Absorption
Yes Yes Yes Yes No	Yes		FDA Compliant
			Thermal
0.25 0.25 0.25 0.19 0.19	0.25	W/(m·k)	Thermal Conductivity
			Coefficient of Linear Thermal Expansion
4x10 ⁻⁶ 124x10 ⁻⁶ 109x10 ⁻⁶	124x10-6	mm/mm.K	25°C to 100°C
5x10 ⁻⁶ 135x10 ⁻⁶ 141x10 ⁻⁶	135x10 ⁻⁶	mm/mm.K	25°C to 150°C
1x10 ⁻⁶ 151x10 ⁻⁶ 141x10 ⁻⁶	151x10 ⁻⁶	mm/mm.K	25°C to 200°C
140x10 ⁻⁶ 140x10 ⁻⁶		mm/mm.K	21°C to 100°C
180x10 ⁻⁶ 180x10 ⁻⁶	<i>.</i>	mm/mm.K	100°C to 150°C
220x10 ⁻⁶ 220x10 ⁻⁶	1.12	mm/mm.K	150°C to 208°C
Non Flammable	E Stor		Flammability
			Electrical
>10 ¹⁶ - 10 ¹⁸ 10 ¹⁶ 0,15-0,25	>1016	Ω.m	Volume Resistivity
>10 ¹⁶ - 10 ¹⁸ 10 ¹⁶ (10 ¹⁷ <10 ⁹ 10 ¹⁷ 10 ¹⁷ (Ω.m Ω/£	

2 - Certain reductions may be PTFE Lined 96

5 - Optional component

3 - Certain reductions may be PFA Lined

PFA Lining Dimensions

The nature of PFA mouldings are such that the lining thickness is very dependent upon the internal diameter of the steelwork, whose standards give rise to large tolerances, therefore these are expressed as minimums.

PTFE Liner Dimensions							
Nomina	l Bore		Outsic	le Diameter ²	٧	all Thickness	Weight
Inches	mm	Liner Type	Nominal mm	Tolerance +/-mm	Nominal mm	Tolerance +/-mm	Per metre kg
1/21	15		25	1.0	2.3	0.2	0.5
3∕4	20		25	1.0	2.3	0.2	0.5
1	25		29	1.0	3.2	0.2	0.6
1½	40		44	1.0	3.2	0.2	0.9
2	50	Heavy	55	1.5	3.2	0.2	1.2
3	80	Duty Virgin	82	1.5	3.2	0.2	1.0
4	100	& Static Dissipating	107	3.0	4.5	0.2	3.5
6	150		159	3.0	5.5	0.2	6.8
8	200		208	3.0	8.5	0.2	13.1
10	250		259	4.0	9.1	0.2	15.9
12	300		319	5.0	10.4	0.4	23.4
14	350		343	5.0	8.3	0.2	21.6
1⁄21	15	UltraHiPerFlon*	25	1.0	2.3	0.2	0.5
3∕4	20		25	1.0	2.3	0.2	0.5
1	25		29	1.0	4.5	0.2	0.8
1½	40	Superweight	43	1.0	4.5	0.2	1.3
2	50	Virgin UHP	54	1.0	4.5	0.2	1.7
3	80		81	1.5	4.8	0.2	2.5
4	100		107	1.5	5.0	0.2	3.5
6	150		159	1.5	6.0	0.2	6.8
8	200	UltraHiPerFlon*	208	3.0	8.5	0.2	13.1
10	250	Heavy	259	4.0	9.1	0.2	15.9
12	300	Duty UHP	319	5.0	10.4	0.4	23.4
14	350		343	5.0	8.3	0.2	21.6

1 - 1/2in liners are too small, so a 3/4in size is used.

2 - When supplied as a separate pipe liner, NB when fitted into a steel pipe the liner will take on the id of the pipe.

PFA Lin	ing Dimen	isions	
Nomina	l Bore	Wall	Thickness
Inches	Inches mm		Minimum mm
1/2	15	3.5	1.8
3⁄4	20	3.5	1.8
1	25	3.5	2.4
1½	40	4.0	2.8
2	50	4.3	3.2
3	80	6.0	4.8
4	100	8.2	6.8
6	150	8.6	6.9
8	200	9.5	7.6
10	250	10.2	8.0
12	300	10.1	7.6
14	350	9.8	7.0

Spool & Fitting Bores

Please note that because of the method of manufacture and tolerances on steel materials these are a guide. Please consult if you require a precise dimension for instrument, mixer or other insertion or a calibrated volume.

		Nominal Lined Bore Diameters				
		Pipe Spool/PTFE Lined Fitting Lined Fitting				
Nominal	Bore	Heavy Duty	PFA			
Inches	mm	mm	mm	mm		
1/2	15	16	16	12		
3⁄4	20	16	16	12		
1	25	20	18	20		
1½	40	34	32	33		
2	50	46	44	44		
3	80	70	68	66		
4	100	93	91	86		
6	150	143	142	137		
8	200	188	CERCER	186		
10 🔬	250	247		237		
12	300	286		287		
14	350	319		317		

Materials Contact Compliance

Materials Standards

Virgin PTFE and **PFA Resins**

virgin only uses Polytetrafluoroethylene (PTFE) and Perfluoroalkoxy (PFA) resins that have the following status relative to food contact regulations.

European Union

Compliance with European Regulation EU No.10/2011 as amended. We can confirm that the raw materials and the subsequent products manufactured have been produced according to a quality management system which complies with the requirements of European Regulation EC No.2023/2006 on good manufacturing practice for materials and articles intended

to come into contact with food.

United States of America

Compliance with U.S. FDA 21 CFR 177.1550 (a)(2) and (b) Perfluorocarbon resins.

Static-Dissipating PTFE Resin

CRP also declares that the high purity furnace black used in the manufacture of static dissipating PTFE products has the following status relative to food contact regulations.

European Union

Compliance with European Regulation EU No.10/2011 as amended. We can confirm that the raw materials and the subsequent products manufactured have been produced according to a quality

material is a conductor.

PIP.53.04A June 1989.

Classification

Result - Measured value 2.1 x 10⁴Ωm

management system which complies with the requirements of European Regulation EC No.2023/2006 on good manufacturing practice for materials and articles intended to come into contact with food.

United States of America

Compliance with U.S. FDA 21 CFR 178.3297 Colorants for polymers. We can confirm that the formulated carbon black levels do not exceed 2.5% by weight.

Static-Dissipating PFA

The carbon used in creating the staticdissipating properties of this PFA is not FDA compliant and nor does the amount used fall under the minimum percentage for compliance. At present there is no FDA compliant material available.

flow. High volume resistivity guarantees that the material acts

as an insulator and low volume resistivity demonstrates that the

The materials are classified as static-dissipative or anti-static and

far exceed the minimum requirements. CRP's static disspating

materials exceed the requirements of the specification EDS.

material specification for PTFE polymers

used to make isostatically moulded PTFE

lined pipework, ram extruded PTFE items

and billets of PTFE which are machined

to produce finished components. This is

not a preferred material for lined piping

components other than those machined

Tested at ambient temperature and 50% relative humidity.

Static-Dissipating PTFE Performance

An independent inspection company and a specialist technical consultancy conducted the following tests with results.

Resistance Test

Measure BS2050 A4.5 modifed for PTFE

Result- Measured resistance 2x10⁶Ω

Resistivity Tests

Surface Resistivity

This is the resistance to leakage of a charge across a square area of surface.

Tested at ambient temperature and 50% relative humidity

Result - Measured value (inside liner) 1.8x10⁴Ωm

Volume Resistivty

100

This is the internal resistance of an insulating material to current

PTFE & PFA Material Standards

ASTM D4895 Type I: Standard Specification for Polytetrafluoroethylene : PTFE : Resin Produced From Dispersion

This is the most common global raw material specification for PTFE polymers which are produced by the controlled coagulation of dispersions. These PTFE's are called "Coagulated Dispersions, Fine Powders or Paste Polymers" and are much more precisely controlled than the coarse

granular materials. These types of PTFE are almost always mixed with a volatile processing aid and are used to make high quality extrusions. Type I grades are suitable for extruding the thick walled liners suitable for lining steel pipes.

ASTM D4894:Standard Specification for Polytetrafluoroethylene : PTFE: Granular Molding and Ram Extrusion Materials

This is the most common global raw

ASTM D3307 Type II:Standard

and Extrusion Materials

Specification for Perfluoroalkoxy

:PFA:-Fluorocarbon Resin Molding

This is the most common global raw

material specification for the various types

of PFA polymers giving full details of the

physical and mechanical attributes of the

PFA both as supplied by the manufacturer

and after processing. The specification

also contains details of test methods to be

from soild.

specification and some Material dimensional standards and tolerances for steel pipe. This is the most common standard for steel pipe and is readily recognised throughout the Petrochemical industry. This specification is widely used in the Grade B form as the standard pipe material for Lined Pipe and Fittings manufacture. It is now quite common to see steel pipes dual certified to this specification and to ASTM A106 Grade B.

ASTM A106 Grade B:Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service

Material specification often seen as a combined specification with API 5L Grade B. Grade B is the most widely used of the three grades steel pipe referred to in ASTM A106. The term grade B determines the chemical composition and mechanical performance of the steel used to make the pipe.

ASTM A105: Carbon Steel Forgings for Piping Applications

Material specification for forgings - in our case flanges.

ASTM A182 Grades: F304/F304L/ F316/F316L/ Standard Specification for Forged or Rolled Alloy-Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High Temperature Service

Material specification for stainless flanges.

ASTM A216 Grade WCB: Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service

A material specification covering both

used for PFA polymers.

Type II

In common with most ASTM Standard Specifications for materials ASTM D3307 is divided into many grades or in this case 13 types each destined for a different application. A type reference determines the mechanical and thermal properties of a particular grade or type. Whilst the mechanical properties are important it is the thermal properties which have the most significance when PFA is used as a corrosion resistant lining material. Corrosion resistance especially resistance to stress corrosion cracking at elevated

Steelwork Material Standards

API 5L Grade B:Specification for Lined Pipe

ASTM A234 Grade WPB: Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service

> Material specification. This standard covers wrought carbon steel fittings which are manufactured to the dimensional specifications of ASME B16.9 used in the fabrication of our flanged pipe fittings.

> Grade WPB is the grade usually used for lined pipe and fittings.

ASTM A240 Grades:

304/304L/316/316L: Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications

Material specification. Stainless steel to this specification is used where plate materials are required in the manufacture of pipe spool stub ends, reducing flanges and bespoke flanges - anywhere plate may be used.

ASTM A276 Grades: 304L/316L: Standard Specification for Stainless Steel Bars and Shapes A material specification used for machined

temperatures is determined by the molecular weight and structure of the PFA. The best lining materials have high molecular weights and are renowned for their extraordinarily high viscosity even when they are fully melted. It is a measure of the viscosity when melted referred to as melt flow index which is the principal method of determining a 'type' of PFA. The lower the melt flow index the greater the melt viscosity and performance in highly aggressive situations. CRP only uses PFA classified to type II which has the lowest melt flow index of all the PFA grades.

performance and composition. Grade WCB is used by CRP in their investment castings for the majority of their PFA lined fittings.

components.

ASTM A312 Grades: 304/304L/316/316L: Standard Specification for Seamless and Welded Austenitic Stainless Steel Pipes

/Specification for Castings, Austenitic, for Pressure-Containing Parts

ASTM A403 Grades:304L/316L/ Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings

Material specification for stainless fittings used in fabricating pipe fittings.

ASTM A516 Grade 60: Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderateand Lower-Temperature Service

A material specification. Steel to this specification is used where plate materials are required in the manufacture of pipe spool stub ends, reducing flanges and bespoke flanges - anywhere plate may be used. There are four grades specified in the standard with different composition and mechanical properties. Grade 60 is the most widely used for CRP's products.

BS970 Grade 080M40(Free Machining Carbon Steel): Specification for wrought steels for mechanical and allied engineering purposes. General inspection and testing procedures and specific requirements for carbon, carbon manganese, alloy and stainless steels

A material specification used for machined components.

Materials Standards Flange Dimensional

Steelwork Dimensional Standards

ASME B36.10 Welded and Seamless Wrought Steel Pipe

Dimensional standard for carbon st pipe. This covers the outside diame of pipes, as well as the various stand wall thicknesses, described as the p schedules.

ASME B16.9: Factory-Made Wrought Buttwelding Fittings

Dimensional standard for the wrou fittings used in the fabrication of flanged pipe fittings.

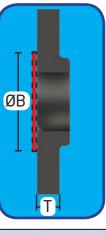
	Carbon	Steel Pipe	e Dimensions	s to ASME B	36.10	
steel neter	Nominal Bore		Pipe	Outside Diameter²	Wall Thickness ²	Inside Diameter²
dard pipe	Inches	mm	Schedule ¹	mm	mm	mm
μιρε	1∕₂³	15	40	26.7	2.9	20.9
	3⁄4	20	40	26.7	2.9	20.9
	1	25	40	33.4	3.4	26.6
ught our	1½	40	40	48.3	3.7	40.9
UUI	2	50	40	60.3	3.9	52.5
	3	80	40	88.9	5.5	77.9
	4	100	40	114.3	6.0	102.3
	6	150	40	168.3	7.1	154.1
	8	200	30	219.1	7.0	205.1
	10	250	30	273.0	7.8	257.4
	12	300	30	323.9	8.4	307.1
	14	350	30	355.6	9.5	336.6
	16	400	Std	406.4	9.5	387.4
the same	18	450	Std	457.2	9.5	438.2
	20	500	Std	508.0	9.5	489.0
h NB pipe	24	600	Std	609.6	9.5	590.6

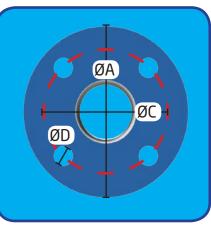
1 - All carbon steel spools and fabricated fittings use pipe schedule. 2 - All dimensions are nominal.

3 - For 1/2 inch NB lined pipe and fittings 3/4 inch is used.

Stainless Steel Pipe Dimensions to ASME B36.19

Stanie	Stamless Steel Pipe Dimensions to ASME B36.19							
					Spools	Fittings		
Nomina	Nominal Bore Diameter ¹		Wall Pipe Thickness ¹		Inside Diameter ¹	Pipe	Wall Thickness ¹	Inside Diameter ¹
Inches	mm	mm	Schedule ²	mm	mm	Schedule ²	mm	mm
1∕₂³	15	26.7	10	2.2	22.3	40	2.8	21.1
3⁄4	20	26.7	10	2.2	22.3	40	2.9	20.9
1	25	33.4	10	2.8	27.9	40	3.4	26.6
1½	40	48.3	10	2.8	42.7	40	3.7	40.9
2	50	60.3	10	2.8	54.8	40	3.9	52.5
3	80	88.9	10	3.1	82.8	40	5.5	77.9
4	100	114.3	10	3.1	108.2	40	6.0	102.3
6	150	168.3	10	3.4	161.5	40	7.1	154.1
8	200	219.1	10	3.8	211.6	30	7.0	205.1
10	250	273.0	10	4.2	264.6	30	7.8	257.4
12	300	323.9	10	4.6	314.8	30	8.4	307.1
14	350	355.6	10	4.8	346.0	30	9.5	336.6


Steel Flange Dimensions ¹ ASME B16.5 Class 150											
				Flar	Flange Thickness (Min)						
Nominal	Bore	Flange	Raised Face ²	Slip-on Welding Flange ³	Lapped Flange	Cast Flange	Pitch Circle	Bolt Holes	Bolt Hole	UNC Bolt	Metric Equivalent
		ØA	ØВ			Т	ØC		ØD	Size	Bolt
Inches	mm	mm	mm			mm	mm	Qty	mm	Inches	M Size
1/2	15	90	34.9	9.60	11.2	8.0	60.3	4	15.9	1/2	M12/M144
3⁄4	20	100	42.9	11.20	12.7	8.9	69.9	4	15.9	1/2	M12/M144
1	25	110	50.8	12.70	14.3	9.6	79.4	4	15.9	1/2	M12/M144
1½	40	125	73.0	15.90	17.5	12.7	98.4	4	15.9	1/2	M12/M144
2	50	150	92.1	17.50	19.1	14.3	120.7	4	19.1	5/8	M16
3	80	190	127.0	22.30	23.9	17.5	152.4	4	19.1	5/8	M16
4	100	230	157.2	22.30	23.9	22.3	190.5	8	19.1	5/8	M16
6	150	280	215.9	23.90	25.4	23.9	241.3	8	22.2	3/4	M20
8	200	345	269.9	27.00	28.6	27.0	298.5	8	22.2	3/4	M20
10	250	405	323.8	28.60	30.2	28.6	362.0	12	25.4	7/8	M24
12	300	485	381.0	30.20	31.8	30.2	431.8	12	25.4	7/8	M24
14	350	535	412.8	33.40	35.0	33.4	476.3	12	28.6	1	M27
16	400	595	469.9	35.00	36.6	35.0	539.8	16	28.6	1	M27
18	450	635	533.4	38.10	39.7	38.1	577.9	16	31.8	11/8	M30
20 🤞	500	700	584.2	41.30	42.9	41.3	635.0	20	31.8	11/8	M30
24	600	815	692.2	46.10	47.7	46.1	749.3	20	34.9	1¼	M30
0		exclude liner th			13000		22311				


to suit production methods. Face to face and centreline to face dimen sions will take account of this. 3 - Flange thickness excluding raised face.

4 - As standard CRP would assume M12 bolting, but M14 can be accomodated if required.

102

2 - Steel raised faces are not usually relevant in lined piping as it is the PTFE or PFA raised face that is critical. Steel raised faces may be retained or may be machined from proprietary flanges

Materials Standards Stub End Dimensional

Materials Standards Cast Fittings Dimensional

— — — ØA	

Cast Fittings Carbon & Stainless Steel Dimensions to ASME B16.5					
Nominal Bore		Outside Diameter ¹	Wall Thickness ¹	Inside Diameter ¹	
Inches	mm	mm	mm	mm	
1	25	33	4.0	25	
1½	40	48	4.8	38	
2	50	62	5.6	51	
3	80	87	5.6	76	
4	100	115	6.4	102	
6	150	166	7.1	152	
8	200	219	7.9	203	
10	250	271	8.7	254	
12	300	324	9.5	305	
14	350	358	10.3	337	

1 - All dimensions nominal.

Key Product Tolerances

Tolerances	
Element	Tolerance
Pipe Length	± 3.2mm
Fixed flange bolt hole alignment	± 1.6mm
Flange perpendicularity (with pipe centreline)	7.8 mm/
Flange Dimensions:	In accord
Fitting Dimensions:	In accord
PTFE Liner Thickness:	
1/2" to 10"	± 0.2mm
12" to 14"	± 0.4mm
PFA Liner Thickness:	Not poss steelwor nominals

Stub End Dimensions						
Nominal Bore		Stub End ¹	Stub End Thickness ²			
		ØA	Т	Weight		
Inches	mm	mm	mm	kg		
1/2	15	44	10	0.1		
3⁄4	20	54	12	0.2		
1	25	64	12	0.3		
1½	40	83	12	0.4		
2	50	102	14	0.7		
21⁄2	65	121	14	0.8		
3	80	133	16	1.2		
4	100	171	16	1.9		
5	125	186	18	2.1		
6	150	216	18	2.6		
8	200	270	20	3.9		
10	250	324	22	5.4		
12	300	381	22	7.1		
14	350	413	24	8.7		
16	400	470	24	10.8		
18	450	533	24	14.4		
20	500	584	24	16.4		
24	600	692	24	21.5		

Diameter is to flange inner bolt circle, up to and including 10 in, after that it is the raised face diamete
 Thickness to EN1092-1., until 14in then it stays at the same thickness.

n
n
/m of diameter
dance with ASME B 16.5
dance with ASME B 16.5

sible to define because of fabricated ork or casting tolerance, however als in catalogue are a good guide.

Design & Quality Standards

Other Activities

Design

CRP's products are all manufactured and tested to national and international standards where applicable, with fundamental design qualification having been undertaken via the approval process required to comply with the Pressure Equipment Directive 2014/68/EU. The primary design standards used by CRP are:

ASME B31.3:Process Piping

This contains requirements for piping typically found in petroleum refineries; chemical, pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals. It covers materials and components, design, fabrication, assembly, erection, examination, inspection, and testing of piping. This represents the core of the design part of a lined piping system.

ASME B16.5: Pipe Flanges and Flanged Fittings: NPS 1:2 through NPS 24

The standard covers pressure-temperature ratings, materials, dimensions, tolerances, marking, testing, and methods of designating openings for pipe flanges and flanged fittings. Key aspects are the design of flanges and the face to face dimensions of flanged fittings. There are a number of pressure classes detailed in the standard.

Class 150

The pressure classification and therefore

dimensional specification that the majority of lined piping is manufactured to is 150 pound (150lb) or in metric terms 10 bar. Therefore this specification is often referred to and is called ASME B16.5 Class 150, or abbreviated to ASME150.

It is possible to manufacture lined piping for Class 300 (300lb), but although this can be achieved dimensionally, it will not achieve the performance levels of Class 300 due to the creep effect on PTFE and PFA. Please note however that the pressure/temperature rating for a Class 150 flange depends on which raw materials you choose to make the flange from. In the case of CRP's ASTM A105 flanges the pressure rating at ambient is 19.6 bar.

ASTM F1545:Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges

This is the latest version of ASTM lined pipe specifications, setting out the materials to be used, methods of fabrication and testing both as type tests and production tests. It covers several plastic materials including PTFE.

It has over the years been used as the bench mark quality standard for the manufacture of PTFE Lined pipe and fittings throughout most of the world with only central Europe preferring the

DIN equivalent.

ASTM F423 is the original lined piping specification which had a little more detail and only referred to PTFE. It is still referred to in some user specifications although withdrawn in 2002. CRP refers to it, in that our product type testing was mainly done against this specification.

ASME Boiler & Pressure Vessel Code Section IX. Welding, Brazing, and Fusing Procedures: Welders: Brazers: and Welding, Brazing and Fusing Operators

The title is self-explanatory and applies to welding activities principally on spools and fittings.

BS EN ISO 9606-1: Qualification testing of welders -- Fusion welding -- Part 1:Steels

This standard applies to the approvals held by CRP's welding operators.

BS EN ISO 15641-1: Specification And Qualification Of Welding Procedures For Metallic Materials - Welding Procedure Test - Part 1:Arc And Gas Welding Of Steels And Arc Welding Of Nickel And Nickel Alloys

This applies to weld procedure qualificaiton.

Quality

ISO 9001:2015

CRP is an ISO 9001:2015 approved company. Originally accredited to BS5750 Part 1 in 1992, CRP maintains this accreditation through a process of continuous third party surveillance with, six monthly, annual and triennial audits taking place. All of the company's manufacturing and test procedures fall within this regime.

Pressure Equipment Directive

CRP's products are all manufactured and tested to national and international standards where applicable, with fundamental design qualification having been undertaken via the approval process

required to comply with the Pressure Equipment Directive 2014/68/EU.

TSG

CRP has Chinese TSG (Manufacturing License of Special Equipment of The Peoples Republic of China) licence approval from the GuangZhou Special Pressure Equipment Inspection and Research Institute, for many of its products, including its range of PTFE/PFA lined pipe and fittings. This is often referred to as a China Stamp.

Welding

Standard

For CRP's range of products with welded construction steel housings, the company employs coded welders (to ASME IX and/ or ISO 9606-1) following procedures in compliance with the requirements of the

PED, and either ASME IX or EN15614-1.

Options

Product Finishing

CRP's standard paint finish is a two component low VOC, high solids fast curing epoxy primer/finish containing zinc phosphate anti-corrosive pigmentation. The standard colour is RAL 5015 - Blue Semi-Gloss, with a typical application thickness of 60 microns.

This paint system is intended as a primer coat and would not be considered as falling within any of the environmental/ durability classifications of ISO 12944 Parts 1 and 2. However as a primer it should provide sufficient durability for site installation and subsequent over

coating. It will perform as a primer coat for the majority of paint systems applied.

CRP can also apply multi-coat wet paint environment and durability requirement. Typically customers require protection for the C4, C5I and C5M environments and Medium or High durability. CRP are able to provide such finishes or apply customer specified paint systems.

Because of the health hazards associated with paints containing free isocyanate CRP are not able to apply these, but can

Product Testing

All virgin PTFE/PFA lined products are subject to an electrostatic spark test at 25kV. All pipe spools and certain fittings are also subject to Hydrotest at 29 bar(g) for three minutes, followed by a relaxation dwell to atmospheric pressure

All spools and fittings lined in static dissipating PTFE/PFA are subject to Hydrotest at 29 bar(g) for three minutes,

followed by a relaxation dwell to atmospheric pressure and a repeat.

Ultrasonic testing is conducted on large diameter PFA lined fittings to determine the liner thickness.

All spools and fittings are visually examined, particularly the flare faces, to ensure that there are no defects that would prevent the item sealing against

Permanent Product Marking

CRP is proud of what we manufacture and wherever possible the product is identified as having been manufactured by us. This is as permanent as practicable - in contrast to much other product on the market which is anonymous. Castings have the CRP logo, together with the web address, our notifed body number (CE mark), the product class (ASME 150), the material standard e.g. A216 WCB and the basic performance limits.

product size e.g. 40 x 25 (11/2" x 1").

Those products subject to PED compliance which are not castings have a high temperature cable tie added with the notifed body number and company details.

Some products have a stainless steel data plate riveted containing basic product data, serial numbers and in some cases

and a repeat.

If required, welding can be carried out by welding sub-contractors compliant with the requirements of ISO 3834-2.

individual weld maps.

Appropriate types and levels of NDT can be offered, including radiography, magnetic particle inspection, dye penetrant, etc.

Welded fabrications can be supplied with

offer alternatives.

Steel components are abrasive blast cleaned using non-ferrous media to Sa systems in ISO 12944 compliant paint 2½ ISO 8501-1 - "very thorough blast systems based on selecting the corrosive cleaning". A surface profile Medium (G) ISO 8503-1 is achieved.

adjacent items.

The mechanical properties and the specific gravity of representative samples of PTFE liner, selected from each sinter batch, are tested to confirm that they comply with the PTFE specification detailed elsewhere in this document.

Shipment Product Marking

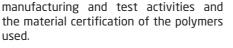
To enable easy identification of product on delivery - particularly when delivering a mixed collection of product for a project. CRP has developed some simple systems which enable items to be matched to delivery documentation. As standard pipe spools are identified with their nominal bore and length in indelible marker pen. Timber end boards are identified with the customer name, CRP order number, order line item number and which one of the

item it is - in the case of multiple identical items on the same line of the order e.g. 1 of 20.

On consultation with the customer, information such as the isometric drawing number or plant item tag can be added both the item and the delivery paperwork, making it easier to select items.

Product Traceability

All CRP manufactured Lined Pipe and Fittings are backwards traceable from the finished component to the manufacturing tests, processes and lining materials.


Pipe Spools

Each spool has one flange stamped with the reference of the liner batch used in its construction. This provides traceability back to the liner manufacture, the tests undertaken and the materials certification

of the polymer.

PFA moulded items likewise are stamped with a mould reference which again provide traceability back to the

Type 2.2. material certification can be provided as routine. Type 3.1 certification can be provided on request.

Installation

CRP has a comprehenisve User Manual which gives extensive guidance on the installation of lined piping systems. Please ensure that those charged with installing the product read this guide and familiarise themselves with the special requirements of lined piping. There is nothing particularly complicated, but there are a few basic rules that must be followed in order to havea successful installation. CRP can also provide comprehensive training

in the installation of lined equipment and our field sales team are trained in providing practical support. Copies of the User Guide are shipped with all product and it is also available to downlload from the website

Non-Destructive Testing

Non-destructive testing is also referred to by the acronym NDT or in the USA as non-destructive examination (NDE). It is the process by which materials – usually metals are examined without destroving them. Usually this is for searching for defects. In the case of CRP it would principally be specified for the examination of welds.

the history of CRP, no product ever failed because of a lac weld integrity. In CRP's pro the welds are not in contact the process fluid and there do not need to retain the liqu gas, they are serving to hold housing together and to sup the lining. As routine, all PFA fittings are subject to at 70 Bar and 370°C as part of moulding process.

It is worth commenting that in

CRP Experience

Training

CRP offer customers and their nominated contractor's comprehensive training in three specific areas:

Installation Training

Because of the niche position of PTFE and PFA lined equipment, it is not unusual for installation contractors to be unfamiliar with the installation of lined equipment. This can lead to installation mistakes, expensive rework and a delayed project implementation. Through the provision of some simple training CRP can assist in ensuring a good piping installation that does the equipment justice and gives the client confidence in its application.

Product Training

CRP is keen to help customers choose the correct lined equipment for the job and get the best out of it. With the health, safety and environmental duties that come to bear on many of our customers and the need to keep the general technical level of understanding up of an ever changing workforce, CRP has developed training to assist design, project and plant engineers to understand the world of lined equipment. The objective is to provide a comprehensive overview of PTFE lined piping systems, including an understanding of why such materials are candidates not only to undertake hands on selected and how they are used. This could be to meet training obligations - either for continuous professional development, or

Field Flare Training

Field Flare piping is a useful addition to the toolbox of any serious user of lined equipment. It provides a simple self-help system, enabling the local fabrication of spools for emergency use or for the odd small modification or maintenance task. Occasionally because of historic site development or convenience some customers manufacture all of their spool requirements locally and CRP can support such users. Through the provision of training CRP can "approve" nominated staff of the end user or their contractor in the use and installation of field flare spools.

Method

Usually this is provided via a classroom based training session, site based or at CRP's facility; making use of audio-visual presentations and classroom media. The two hours and a class size of around 10 is ideal. The training is provided by our technical, manufacturing and commercial staff as appropriate. Field flare training is usually provided via a practical training session at CRP's factory. This enables the training on the activity of field flaring, but also to understand all of the other issues that surround the use of fluoropolymer lined equipment.

A short multiple choice question paper is set

t has
k of
duct
with
efore
id or
l the
oport
lined
least
f the

Appro	Appropriate Non-Destructive Testing				
Weld Type	Material	Radiography	Ultrasonic	Magnetic Particle Inspection	Liquid (Dye) Penetrant
Butt Weld	Carbon Steel	~	~	~	\checkmark
Butt Weld	Stainless Steel	~	~	×	~
Fillet Weld	Carbon Steel	×	×	~	✓ Not preferred
Fillet Weld	Stainless Steel	×	×	×	✓

to fulfil health and safety requirements.

to both help fix and confirm understanding. As part of the presentation, CRP will put together a small exhibition of products to aid understanding and a question and answer session concludes the training.

Course Materials

We plan to provide course materials for each attendee, which will include notes relating to the presentation and other reference materials for subsequent reference. We will also provide immediately after the visit, certificates confirming the individual's attendance and understanding of the training.

Caveat and Costs

It is important to comment that we are not acting as paid consultants. We are not insured for such a role. However, we believe that we can bring a wealth of both theoretical and practical experience that is not available from other sources, which should give your team and others training session would typically last a good background in working with these materials.

> We see the provision of such training as part of the added value that a supply chain relationship with CRP can bring. To this end we offer such training to our supply contract customers and their agents and sub-contractors. Costs are usually on the basis of meeting our expenses.

Template Lined Piping Specification - Carbon Steel

Template Lined Piping Specification - Carbon Steel

Performance	Temperature Range		-29°C to +200°C Class 150		
	Pressure Range Vacuum Range		Temperature Max Pressure (bar g) (°C) Class 150 -29 to +38 19.6 50 19.2 100 17.7 150 15.8 200 13.8 Nb. It is acceptable to linearly interpolate to intermediate temperatures.		
			1'' - 8'' NB: Full vacuum at all temperatures. 10'' - 12'' NB: Full vacuum at temperatures up to 150°C.		
Design Standards	Metalwork		ASME B31.3, ASME B16.5, PER/PED		
	Lined Items		ASTM F1545 – ASME B16.5 Class 150		
Materials	Virgin PTFE Liners	Standards	PTFE to ASTM D4895 Type I, Grade 1, Class A or B Method of manufacture: Fine powder paste extrusion.		
		Mechanical properties	Minimum Tensile Requirements: Longitudinal Tensile Strength at Break: 20.7 MPa (when tested to ASTM D4895) Transverse Tensile Strength at Break: 19.0 MPa (when tested to ASTM D4895) Longitudinal Elongation at Break: 250% (when tested to ASTM D4895) Transverse Elongation at Break: 200% (when tested to ASTM D4895) Specific Gravity: 2.14-2.17 (when tested to ASTM D792)		
		Minimum Wall Thicknesses	NB Min Wall (mm) NB Min Wall (mm) ½" 2.0 4" 4.5 ¾" 2.0 6" 6.0 1" 3.0 8" 8.0 1.1/2" 3.0 10" 9.0 2" 3.0 12" 9.5 3" 3.0 14" 8.3 Nb. All blind flanges are supplied with bonded on, 2mm thick PTFE liner.		
		Products lined in PTFE	 All spools All type 2 and type 3 spacers Concentric and eccentric reducers with one size reduction Some reducing flanges Elbows with angles other than 90 degrees, and/or with non-standard centreline to face dimensions. Isostatically moulded PTFE liners shall not be used except by specific concession. 		
		Notes	 Spool liners to be a sliding or interference fit. Linings shall show no evidence of pinholes, porosity or cracks. Any bulges or other obvious indication of poor contact with the housing shall be cause for rejection. The gasket-sealing surface of the linings shall be free of surface defects that could impair sealing effectiveness. Scratches, dents, nicks or tool marks on the sealing surface shall be not deeper than 0.15 mm. Any radial defect shall be cause for rejection. Additives and colourants in liners are not permitted. Linings shall be made from virgin material. Reworked material is not permitted. Linings on flange/collar faces shall be uniform thickness, and not less than 80% of the wall thickness in the bore, unless otherwise agreed. 		
	Static-Dissipating PTFE Liners	Standards	PTFE to ASTM D4895 Type I, Grade 1, Class A Fluffy Form Speciality Carbon Black meeting the requirements of F1545 for fillers Method of manufacture: Fine powder paste extrusion.		
		Mechanical properties	Minimum Tensile Requirements: Longitudinal Tensile Strength at Break: 20.7 MPa (when tested to ASTM D4895) Transverse Tensile Strength at Break: 19.0 MPa (when tested to ASTM D4895) Longitudinal Elongation at Break: 250% (when tested to ASTM D4895) Transverse Elongation at Break: 200% (when tested to ASTM D4895) Specific Gravity: 2.14-2.17 (when tested to ASTM D792) Resistance: < 1 MΩ thereby meeting the requirements of DIN 2874 Section 3.7 and		

ials Static Dissipatin; PTFE Liner	5	NB Min Wall (mm) NB Min Wall (mm) ½" 2.0 4" 4.5 ¾" 2.0 6" 6.0 1" 3.0 8" 8.0 1.1/2" 3.0 10" 9.0 2" 3.0 12" 9.5 3" 3.0 14" 8.3 Nb. All blind flanges are supplied with bonded on, 2mm thick PTFE liner. 1100
	Products lined in PTFE	 All spools All type 2 and type 3 spacers Concentric and eccentric reducers with one size reduction Some reducing flanges Elbows with angles other than 90 degrees, and/or with non-standard centreline to face dimensions. Isostatically moulded PTFE liners shall not be used except by specific concession.
	Notes	 Spool liners to be a sliding or interference fit. Linings shall show no evidence of pinholes, porosity or cracks. Any bulges or other obvious indication of poor contact with the housing shall be cause for rejection. The gasket-sealing surface of the linings shall be free of surface defects that could impair sealing effectiveness. Scratches, dents, nicks or tool marks on the sealing surface shall be not deeper than 0.15 mm. Any radial defect shall be cause for rejection. Reworked material is not permitted. Linings on flange/collar faces shall be uniform thickness, and not less than 80% of the wall thickness in the bore, unless otherwise agreed.
Virgin PFA Linings	Standards	PFA to ASTM D3307 type II Note PFA is the preferred lining material for fittings, with paste extruded PTFE liners also acceptable.
	Mechanical properties	Minimum Tensile Requirements: Tensile Strength at Break: 26.2 MPa (when tested to ASTM D3307 or ISO 12086) Elongation at Break: 300% (when tested to ASTM D3307 or ISO 12086) Minimum Melting Temperature: 300°C (when tested to ASTM D4591) Specific Gravity: 2.12-2.17 (when tested to ASTM D792) Melt Flow Rate: 1-3g/10mins (when tested to ASTM D3307 or ISO 12086)
	Minimum Wall Thicknesses	NB Min Wall (mm) NB Min Wall (mm) 1" 3 6" 5 1.1/2" 3 8" 6.5 2" 3 10" 7.5 3" 3 12" 8.5 4" 4 14" 8.5
	Products lined in PFA	 Class 150 90 degree elbows with standard centreline to face dimensions Equal and reducing tees Instrument tees Equal and reducing: crosses; short stack tees; lateral tees Concentric and eccentric reducers with more than one size reduction Some reducing flanges Isostatically moulded PTFE liners shall not be used except by specific concession.
	Notes	 Linings shall show no evidence of pinholes, porosity or cracks. The gasket-sealing surface of the linings shall be free of surface defects that could impair sealing effectiveness. Scratches, dents, nicks or tool marks on the sealing surface shall be not deeper than 0.15 mm. Any radial defect shall be cause for rejection. Additives and colourants in liners are not permitted. Linings on flange/collar faces shall be uniform thickness, and not less than 80% of the wall thickness in the bore, unless otherwise agreed.
Static	Standards	Not applicable, not covered by ASTM D3307
Dissipatin PFA Lining	Iviecnanical	$\label{eq:stress} \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Template Lined Piping Specification - Carbon Steel

Template Lined Piping Specification - Carbon Steel

Materials	Static Dissipating PFA Linings	Minimum Wall Thicknesses	NB Min Wall (mm) NB Min Wall (mm) 1" 3.0 6" 5.0 1.1/2" 3.0 8" 6.5 2" 3.0 10" 7.5 3" 3.0 12" 8.5 4" 4.0 14" 8.5
		Products lined in PFA	 Class 150 90 degree elbows with standard centreline to face dimensions Equal and reducing tees Instrument tees Equal and reducing: crosses; short stack tees; lateral tees Concentric and eccentric reducers with more than one size reduction Some reducing flanges Isostatically moulded PTFE liners shall not be used except by specific concession.
		Notes	 Linings shall show no evidence of pinholes, porosity or cracks. The gasket-sealing surface of the linings shall be free of surface defects that could impair sealing effectiveness. Scratches, dents, nicks or tool marks on the sealing surface shall be not deeper than 0.15 mm. Any radial defect shall be cause for rejection. Linings on flange/collar faces shall be uniform thickness, and not less than 80% of the wall thickness in the bore, unless otherwise agreed.
	Metalwork	Spools	Flanges:ASTM A105NPipe:ASTM A106 Grade B/API 5L Grade BStub Ends:BS1501-161-430A
		Cast Fittings	Cast Steel: ASTM A216 Grade WCB Ductile Iron: ASTM A395 Grade 60-40-18
		Fabricated Fittings	Flanges:ASTM A105NPipe:ASTM A106 Grade B/API 5L Grade BForged Bends:ASTM A234 Grade WPBStub Ends:BS1501-161-430APlate:BS1501-161-430A
		NDE	Not required
		Heat Treatment	Not required
	Venting	Bosses	Castings: As per parent metal Fabrications: Drawn mild steel bar
		Plugs	Virgin PTFE
Dimensions	Spools	NB & Length	Van Stone Class 150Welded Fixed/Rotating Class 150NBMin (mm)Max (mm) $½''$ 2506000 $3/''$ 2506000 $3/''$ 2506000 $1''$ 2506000 $1''$ 2506000 $1''$ 2506000 $1''$ 2506000 $1.1/2''$ 2506000 $2''$ 2506000 $3''$ 2506000 $3''$ 2506000 $4''$ 2506000 $4''$ 2506000 $6''$ 5006000 $8''$ 5003000 $8''$ 1503000 $12''$ 1703000 $14'''$ 1903000
		Flange Arrangement	1" to 8" Van Stone construction flanged pipe with 2 rotating flanges. 10" to 14" Welded construction 1 flange fixed, 1 flange rotating.
		Stub End Sizes for welded construction	NB OD (mm) Thickness (mm) NB OD (mm) Thickness (mm) ½" 44 10 4" 171 16 ¾" 54 12 6" 216 18 1" 64 12 8" 270 20 1.1/2" 83 12 10" 324 22 2" 102 14 12" 381 22 3" 133 16 14" 413 24
		Pipe & Flange Specs	Pipe: ½" – 6" NB: Sch.40; 8" – 14": Sch.30 Flanges: ASME B16.5 Class 150

Dimensions	Fittings	External Sizes	90 degree elbows, 45 degree elbows, equal tees, reducing tees, concentric reducers; Face to face and centreline to face dimensions as per ASME B16.5 Class 150 Instrument tees: Branch Body Face to face (mm) NB Class 150 1" 51 76 2" 89 3" 150 N/A Nb. Centreline to face is the same as for an equivalent reducing tee. Not all combinations of body and branch size are possible for instrument tees			
		Flange Arrangements	Standard is all fixed off centres. Rotating flanges and on centres flanges can be supplied if required. If rotating flanges are used, collar thicknesses will be the same as for spools, unless dictated by component geometry.			
		Pipe & Flange Specs	Pipe: ½" - 6" NB: Sch.40; 8" - 14": Sch.30 Flanges: ASME B16.5 Class 150 Casting wall thicknesses: As per ASME B16.5 Class 150			
	Spacers	General	Spacers are a non-preferred item. The use of site closing spools is a better way of making site adjustments.			
		Туре 1	These are solid Virgin PTFE thick walled rings. For all nominal bore sizes the minimum thickness is 1mm and the maximum thick- ness is 25mm. They can be supplied with a small taper angle if required. These spacers should not be used for pressures greater than Class 150.			
		Types 2 & 3	Type 2 (thick walled steel hollow bar), and type 3 (pipe with welded on stub ends)spacers are both permissible.Materials: Steelwork and liners and are the same as for spools.Liner thicknesses: These are the same as for spools of the same nominal bore.The outside diameter of all spacers is to be inner bolt circle diameter.Lengths:NB Min (mm) Max (mm) $\frac{1}{2^2}$ 26604"26150 $\frac{3}{4^2}$ 26606"26150 $\frac{1}{4^2}$ 261008"26200 $1.1/2^{"}$ 2610010"26200 $\frac{2^{"}}{3"}$ 2615012"26200 $\frac{3^{"}}{3"}$ 2615014"26200			
	Venting	PTFE Lined Items	Smm vent hole Vent hole locations: Spools: ≤ 500mm length 1 vent hole centrally 501mm - 6000mm length 2 vent holes 150mm from each flange on same axis. Fittings: 1 vent hole centrally, or as cast. Permeant Service Venting: Vent Boss Description (see Fig 2 below): Vent Boss Description (see Fig 2 below): Vent bosses shall be carbon steel, set on and welded using a full penetration were the welding boss shall be threaded BSP parallel. There shall be a minimum of 10mm of full threads. A 5mm vent hole in the pipe shall be drilled and deburree post welding to ensure the welding process does not obscure the vent hole. Vent boss locations: Spools: ≤ 500mm length One vent boss centrally 501mm - 6000mm length 2 vent bosses 150mm from each flange on same axis. Fittings* One vent boss centrally, or as cast on. * Excludes reducing flanges, instrument tees and type 2 spacers where no vent is required - the body is tapped and the vent plug fitted directly into it. Vent Plugs: Vent plugs shall be made from Virgin PTFE, and the design shall be as shown in below. Every spool and fitting shall be supplied with a vent plug fitted into ever vent boss/vent hole.			
		PFA Lined Items	No specific venting required, with the injection boss acting as a vent.			
			Permeant Service Venting: Vent Boss Description (see fig 3 below): The injection boss on the fitting shall be used for the venting system. The injection boss will be drilled and tapped ½" BSP parallel. The tapping drill hole will extend 2 – 3mm beyond the end of the threads. A flat bottomed drill will be used. A ½" BSP parallel x ¼" BSP parallel reducing bush will be fitted to the injection boss.			

Template Lined Piping Specification - Carbon Steel

Template Lined Piping Specification - Carbon Steel

Dimensions	Venting	PFA Lined Items	Vent Plugs: Vent plugs shall be made from Virgin PTFE, and the design shall be as shown in Fig 1 below. Every fitting shall be supplied with a vent plug fitted into the reducing bush in the injection boss.	
		Vent Extensions – All items	If vent extensions are required for insulated lines, there shall be a threaded ¼" BSPP half coupling welded over the vent hole and a carbon steel taper threaded pipe fit- ted over this to create a 70mm tall assembly. For PFA lined fittings a threaded steel reducer is fitted to the injection bosses to take the extension pipe. Permeant Service Venting: The permeant service vent boss is fitted either directly to pipe spools or as part of a reducer in PFA fittings and a 5mm hole extension piece fitted (see Figs 4 & 5 below)	
		Notes	Each pipe and fitting including reducing flanges, instrument tees, lined spacers etc. shall be provided with a venting system that will release any gas which, during service, may permeate through the lining and will also indicate any leakage due to failure of the lining. Variable angle outlet PTFE vent plugs (see Fig 6 below) can be retro-fitted to vent plugs if required.	
Earthing			Earth continuity shall be achieved by the use of star washers on two of the joint bolts and a CRP spikey washer behind all rotating flanges.	
In Process Testi	ing	PTFE Liners	Visual Outside Diameter Wall thickness (4 positions) Acceptable sintering profile Longitudinal Tensile Strength Transverse Tensile Strength Longitudinal Elongation at Break Transverse Elongation at Break SG determination of PTFE	
Finished Produ	ct Testing	Class 150 flanged spools & fittings	Hydrostatic Test: Raise pressure to 29 bar g, hold for 3 minutes, and reduce pres- sure. Repeat cycle. Electrostatic Test: 25kV all over surface of lining.	
			Hydrostatic Test: Any evidence of leakage shall be cause for rejection. Electrostatic Test: Any audible or visible spark through the lining shall be cause for rejection. The electrostatic test shall be carried out after the hydrostatic test.	
Paint Finish			As standard all items will be supplied painted with CRP standard two component low VOC, high solids fast curing epoxy primer/finish containing zinc phosphate anti- corrosive pigmentation: Intergard 345, RAL 5015, blue semi-gloss. Typical thickness 60 microns. Other paint colours and systems are available by agreement.	
Packing PTFE lined items		PTFE lined items	Timber end boards bolted to all flange faces.	
PFA lined items	5		Push fit plastic end caps to all flange faces.	
Certification			Standard certificate of conformity provides details of materials used and details of Electrostatic Test and Hydrostatic Test. All material test certificates if requested at time of order.	
Identification Fittings		Spools	NB, size, length, supplier order number, line item number and customer name to be marked on end boards.	
			Supplier order number and line item number to be marked on end caps.	
Traceability			All products should be reverse traceable from component through the manufactur- ing process to original polymer certification. This is provided on fittings via a unique number stamped upon the component flange and on pipe spools via the PTFE run reference stamped upon the component flange. All records relating to the manu- facture and test of these items shall be available for scrutiny.	
Quality Systems			Certificate 020-QMS-001 for ISO9001:2015 for the development and manufacture of fluoropolymer lined and metallic piping systems, associated pipeline equipment and swampling systems. The stocking and supply of third party valve and actuation products and associated pipeline equipment. Sub-contract fluoropolymer moulding and lining services.	

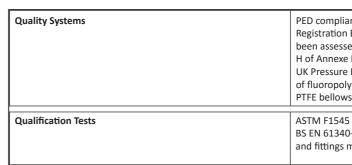
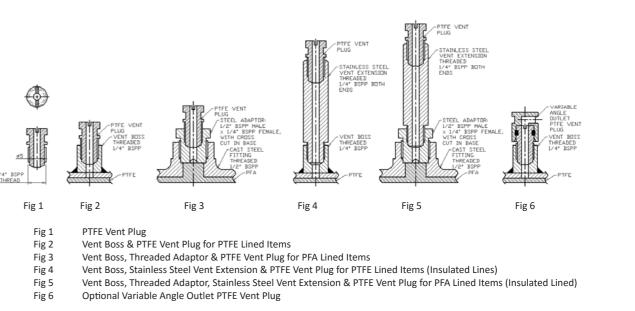



Diagram of permeant venting arrangements

PED compliant, suitable for Group 1 Gases.

Registration BES 399303-1/2 in respect of a Quality Management System which has been assessed and found to comply with the requirements of modules D1, E1 and H of Annexe III of the Pressure Equipment Directive 97/23/EC and Schedule 4 of the UK Pressure Equipment Regulations 1999 (SI 2001) for the design and manufacture of fluoropolymer lined and metallic piping systems, associated piping equipment, PTFE bellows and sampling systems.

BS EN 61340-2-3 third party testing determining that static-dissipating lined pipe and fittings manufactured by CRP have been proven as static-dissipative.

This information is for general guidance only, no warranty is given for its accuracy and CRP reserve the right to change specifications without notice. © CRP

1

0-

.10

Compiled for CRP by Josh, David, Elliot, Steven, Natalie, Phil, Michael and Jarrar.

10.11

CRP

Todmorden Road Littleborough OL15 9EG United Kingdom

tel: +44 (0)1706 756400 fax: +44 (0)1706 379567 e-mail: enquiry@crp.co.uk

www.crp.co.uk www.ptfebellows.com